Câu hỏi:

03/04/2024 32

Giải bóng chuyền quốc tế VTV Cup có 8 đội tham gia, trong đó có hai đội Việt Nam. Ban tổ chức bốc thăm ngẫu nhiên để chia thành hai bảng đấu, mỗi bảng 4 đội. Xác suất để hai đội của Việt Nam nằm ở hai bảng khác nhau bằng

A. 27

B. 57

C. 37

D. 47

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Chọn D

Nhận định bài toán:

1) Đây là dạng bài toán phân chia một tập hợp ra thành các nhóm có số lượng bằng nhau.

2) Phương pháp:

Dạng bài toán này được phân chia làm 2 loại đó là:

-    Các nhóm có thứ tự A, B, C, D…

-    Các nhóm không phân biệt thứ tự.

Nếu không phân biệt rõ ràng 2 bài toán này thì rất dễ dẫn đến nhầm lẫn và sai kết quả.

Ví dụ: Có bao nhiêu cách chia 20 người thành 4 nhóm, mỗi nhóm có 5 người trong các trường hợp sau:

a) Các nhóm được đánh tên theo thứ tự A, B, C, D.

b) Không phân biệt thứ tự nhóm.

Lời giải

a) Số cách chọn 5 người cho nhóm A là C205 . Ứng với mỗi cách chọn trên, ta có số cách chọn 5 người cho nhóm B là C155, nhóm C là C105 và 5 người còn lại vào nhóm D.

Theo quy tắc nhân, ta được số cách chia nhóm là:  (cách).

b) Vì các nhóm không phân biệt thứ tự nên khi ta hoán vị 4 nhóm trên sẽ cho cùng một kết quả. Do đó số cách chia trong trường hợp này là

3) Phân tích bài toán và lời giải.

Chia 8 đội thành hai bảng đấu, do đó hai bảng đấu này sẽ có thứ tự rõ ràng cho nên bài toán của chúng ta thuộc loại chia nhóm có thứ tự.

Gọi hai bảng đấu là bảng A và bảng B.

Chọn 4 đội vào bảng A ta có C84  cách, bốn đội còn lại vào bảng B có 1 cách.

Theo quy tắc nhân, ta có số cách chia 8 đội vào hai bảng đấu là:

Gọi A là biến cố “Hai đội Việt Nam nằm ở hai bảng khác nhau”.

Bảng A: Có 3 đội nước ngoài và 1 đội Việt Nam. Số cách chọn là C63.C21 .

Bảng B: Chỉ còn 1 cách chọn duy nhất cho 3 đội nước ngoài và 1 đội Việt Nam còn lại vào bảng B.

 

Do đó số cách chia 8 đội thành 2 bảng mỗi bảng có 1 đội Việt Nam là : n(A) = C63.C21.1 = 40 cách

Vậy xác suất của biến cố A là: 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau là

Xem đáp án » 03/04/2024 98

Câu 2:

Lập một số tự nhiên có 4 chữ số. Tính xác suất để số đó có chữ số đứng trước không nhỏ hơn chữ số đứng sau.

Xem đáp án » 03/04/2024 94

Câu 3:

Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau

Xem đáp án » 03/04/2024 79

Câu 4:

Trong kỳ thi Chọn học sinh giỏi tỉnh có  em dự thi, có 105 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau.

Xem đáp án » 03/04/2024 76

Câu 5:

Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau

Xem đáp án » 03/04/2024 68

Câu 6:

Cho tập S = {1;2;3;...;19;20} gồm 20 số tự nhiên từ 1 đến 20. Lấy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là

Xem đáp án » 03/04/2024 65

Câu 7:

Xếp ngẫu nhiên 2 quả cầu xanh, 2 quả cầu đỏ, 2 quả cầu trắng (các quả cầu này đôi một khác nhau) thành một hàng ngang. Tính xác suất để 2 quả cầu màu trắng không xếp cạnh nhau?

Xem đáp án » 03/04/2024 61

Câu 8:

Cho một bảng ô vuông 3x3

Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên (mỗi ô chỉ điền một số). Gọi A là biến cố “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của A bằng:

Xem đáp án » 03/04/2024 58

Câu 9:

Tung đồng thời 2 con súc sắc cân đối đồng chất. Gọi m là tích của số chấm trên hai con súc sắc trong mỗi lần tung. Tính xác suất để phương trình 12x2 +6x +m = 0  có hai nghiệm phân biệt.

Xem đáp án » 03/04/2024 56

Câu 10:

Gọi X là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ. 

Xem đáp án » 03/04/2024 52

Câu 11:

Cho tập hợp (S). Hai bạn A, B mỗi bạn chọn ngẫu nhiên một tập con của (S). Xác suất để tập con của A và B chọn được có đúng 2 phần tử chung gần nhất với kết quả nào dưới đây?

Xem đáp án » 03/04/2024 49

Câu 12:

Cho tập X = {1;2;3;....;8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là

Xem đáp án » 03/04/2024 47

Câu 13:

Có 3 quả cầu màu vàng, 3 quả cầu màu xanh (các quả cầu cùng màu thì giống nhau) bỏ vào hai cái hộp khác nhau, mỗi hộp  quả cầu. Tính xác suất để các quả cầu cùng màu thì vào chung một hộp. 

Xem đáp án » 03/04/2024 44

Câu 14:

Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.

Xem đáp án » 03/04/2024 44

Câu 15:

Cho một đa giác đều 48 đỉnh. Lấy ngẫu nhiên 3 đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.

Xem đáp án » 03/04/2024 44