Câu hỏi:
03/04/2024 98Trong chương trình giao lưu gồm có 15 người ngồi vào 15 ghế theo một hàng ngang. Giả sử người dẫn chương trình chọn ngẫu nhiên 3 người trong 15 người để giao lưu với khán giả. Xác suất để trong 3 người được chọn đó không có 2 người ngồi kề nhau là
Trả lời:
Chọn C
Ta có:
Gọi A là biến cố “trong 3 người được chọn đó không có 2 người ngồi kề nhau”
=> là biến cố “trong 3 người đươc chọn có ít nhất 2 người ngồi kề nhau”
TH 1: 3 người ngồi kề nhau có 13 cách chọn.
TH 2: có 2 người ngồi cạnh nhau
- Hai người ngồi cạnh nhau ngồi đầu hàng có 2 cách chọn, với mỗi cách chọn như vậy có 12 cách chọn người còn lại vậy có: 2.12=24 cách.
- Hai người ngồi cạnh nhau không ngồi đầu hàng có 12 cách chọn, với mỗi cách chọn như vậy có 11 cách chọn người còn lại vậy có: 11.12=132 cách.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Lập một số tự nhiên có 4 chữ số. Tính xác suất để số đó có chữ số đứng trước không nhỏ hơn chữ số đứng sau.
Câu 2:
Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau
Câu 3:
Trong kỳ thi Chọn học sinh giỏi tỉnh có em dự thi, có 105 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có 5 ghế và mỗi ghế chỉ ngồi được 1 học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau.
Câu 4:
Cho S là tập tất cả các số tự nhiên có 7 chữ số, lấy ngẫu nhiên một số từ tập S. Xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 có kết quả gần nhất với số nào trong các số sau
Câu 5:
Cho tập S = {1;2;3;...;19;20} gồm 20 số tự nhiên từ 1 đến 20. Lấy ngẫu nhiên ba số thuộc S. Xác suất để ba số lấy được lập thành một cấp số cộng là
Câu 6:
Xếp ngẫu nhiên 2 quả cầu xanh, 2 quả cầu đỏ, 2 quả cầu trắng (các quả cầu này đôi một khác nhau) thành một hàng ngang. Tính xác suất để 2 quả cầu màu trắng không xếp cạnh nhau?
Câu 7:
Cho một bảng ô vuông 3x3
Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên (mỗi ô chỉ điền một số). Gọi A là biến cố “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của A bằng:
Câu 8:
Tung đồng thời 2 con súc sắc cân đối đồng chất. Gọi m là tích của số chấm trên hai con súc sắc trong mỗi lần tung. Tính xác suất để phương trình có hai nghiệm phân biệt.
Câu 9:
Gọi X là tập hợp các số tự nhiên có 6 chữ số đôi một khác nhau. Lấy ngẫu nhiên một số thuộc tập X. Xác suất để số lấy được luôn chứa đúng ba số thuộc tập Y = {1;2;3;4;5} và 3 số đứng cạnh nhau, số chẵn đứng giữa hai số lẻ.
Câu 10:
Cho tập hợp (S). Hai bạn A, B mỗi bạn chọn ngẫu nhiên một tập con của (S). Xác suất để tập con của A và B chọn được có đúng 2 phần tử chung gần nhất với kết quả nào dưới đây?
Câu 11:
Cho tập X = {1;2;3;....;8}. Lập từ X số tự nhiên có 8 chữ số đôi một khác nhau. Xác suất để lập được số chia hết cho 1111 là
Câu 12:
Có 3 quả cầu màu vàng, 3 quả cầu màu xanh (các quả cầu cùng màu thì giống nhau) bỏ vào hai cái hộp khác nhau, mỗi hộp quả cầu. Tính xác suất để các quả cầu cùng màu thì vào chung một hộp.
Câu 13:
Cho đa giác 30 đỉnh nội tiếp đường tròn, gọi (S) là tập hợp các đường thẳng đi qua hai trong số 30 đỉnh đã cho. Chọn 2 đường thẳng bất kỳ thuộc tập (S). Tính xác suất để chọn được 2 đường thẳng mà giao điểm của chúng nằm bên trong đường tròn.
Câu 14:
Cho một đa giác đều 48 đỉnh. Lấy ngẫu nhiên 3 đỉnh của đa giác. Tính xác suất để tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn.
Câu 15:
Cho một đa giác đều có 20 đỉnh nội tiếp trong đường tròn (C). Lấy ngẫu nhiên hai đường chéo trong số các đường chéo của đa giác. Tính xác suất để lấy được hai đường chéo cắt nhau và giao điểm của hai đường chéo trong đường tròn?