Câu hỏi:
30/01/2024 47
Giá trị của biểu thức g(1) biết g(x) = 2f(x) – h(x) và f(x) = 2x3 + 3x + 12;
h(x) = 12x2 + 11x + 5.
Giá trị của biểu thức g(1) biết g(x) = 2f(x) – h(x) và f(x) = 2x3 + 3x + 12;
h(x) = 12x2 + 11x + 5.
A. 4
B. 5
C. 6
D. 7
Trả lời:
Đáp án đúng là: C
Ta có:
g(x) = 2f(x) – h(x)
= 2(2x3 + 3x + 12) – (12x2 + 11x + 5)
= 4x3 + 6x + 24 – 12x2 – 11x – 5
= 4x3 – 12x2 – 5x + 19.
Suy ra g(1) = 4 – 12 – 5 + 19 = 6.
Đáp án đúng là: C
Ta có:
g(x) = 2f(x) – h(x)
= 2(2x3 + 3x + 12) – (12x2 + 11x + 5)
= 4x3 + 6x + 24 – 12x2 – 11x – 5
= 4x3 – 12x2 – 5x + 19.
Suy ra g(1) = 4 – 12 – 5 + 19 = 6.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Bậc, hệ số cao nhất và hệ số tự do đa thức h(x) = f(x) – g(x) lần lượt là (Biết f(x) = 3x4 + 3x2 + 5x + 9 và g(x) = 4x2 + 3x + 3):
Bậc, hệ số cao nhất và hệ số tự do đa thức h(x) = f(x) – g(x) lần lượt là (Biết f(x) = 3x4 + 3x2 + 5x + 9 và g(x) = 4x2 + 3x + 3):
Câu 4:
Bậc, hệ số cao nhất, hế số tự do của đa thức f(x) lần lượt là (Biết
g(x) = f(x) : h(x) và g(x) = 2x2 + 3x + 1; h(x) = 2x + 1:
Bậc, hệ số cao nhất, hế số tự do của đa thức f(x) lần lượt là (Biết
g(x) = f(x) : h(x) và g(x) = 2x2 + 3x + 1; h(x) = 2x + 1:
Câu 5:
Cho hai đa thức f(x) = x3 − 4x2 + 3 và g(x) = −x3 + 2x – 1. Nghiệm của đa thức h(x) = f(x) + g(x) là:
Cho hai đa thức f(x) = x3 − 4x2 + 3 và g(x) = −x3 + 2x – 1. Nghiệm của đa thức h(x) = f(x) + g(x) là:
Câu 6:
Đa thức F(x) thỏa mãn đồng thời các điều kiện sau:
Bậc của F(x) bằng 2.
Hệ số của x bằng 3.
Hệ số cao nhất của F(x) bằng 1 và hệ số tự do bằng 4.
Đa thức F(x) thỏa mãn đồng thời các điều kiện sau:
Bậc của F(x) bằng 2.
Hệ số của x bằng 3.
Hệ số cao nhất của F(x) bằng 1 và hệ số tự do bằng 4.
Câu 8:
Rút gọn biểu thức: (x – 1)(x – 2)(x – 3) + (x + 1)(x + 2)(x + 3) ta được:
Rút gọn biểu thức: (x – 1)(x – 2)(x – 3) + (x + 1)(x + 2)(x + 3) ta được:
Câu 9:
Cho f(x) = −x5 + 3x2 + 4x + 8 và g(x) = −x5 – 3x2 + 4x + 2.
Khẳng định đúng về đa thức g(x) – f(x) là:
Cho f(x) = −x5 + 3x2 + 4x + 8 và g(x) = −x5 – 3x2 + 4x + 2.
Khẳng định đúng về đa thức g(x) – f(x) là: