Đồ thị hàm số y = ax^3 + bx^2 + cx + d có hai điểm cực trị là A(1; -7); B(2; -8)
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y (−1).
Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A(1; −7); B(2; −8). Tính y (−1).
y = ax3 + bx2 + cx + d Þ y¢ = 3ax2 + 2bx + c
+ Đồ thị hàm số đi qua hai điểm A(1; −7); B(2; −8) nên ta có:
\[\left\{ \begin{array}{l}a + b + c + d = - 7\\8a + 4b + 2c + d = - 8\end{array} \right.\;\;\;\left( 1 \right)\]
+ Đồ thị y¢ = 3ax2 + 2bx + c có hai điểm cực trị là A(1; −7); B(2; −8) nên nó nhận x = 1 và x = 2 là nghiệm của phương trình y¢ = 0, suy ra:
\(\left\{ \begin{array}{l}3a + 2b + c = 0\\12a + 4b + c = 0\end{array} \right.\;\;\;\left( 2 \right)\)
Từ (1) và (2) ta có một hệ phương trình 4 ẩn là:
\[\left\{ \begin{array}{l}a + b + c + d = - 7\\8a + 4b + 2c + d = - 8\\3a + 2b + c = 0\\12a + 4b + c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = - a - b - c - 7\\7a + 3b + c = - 1\\3a + 2b + c = 0\\12a + 4b + c = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}d = - a - b - c - 7\\c = - 3a - 2b\\4a + b = - 1\\5a + b = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = - a - b - c - 7\\c = - 3a - 2b\\4a + b = - 1\\a = 2\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}d = - a - b - c - 7\\c = - 3a - 2b\\b = - 1 - 4a\\a = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}d = - 12\\c = 12\\b = - 9\\a = 2\end{array} \right.\]
Khi đó: y (−1) = −a + b − c + d = −2 + (−9) − 12 + (−12) = −35.