Câu hỏi:
29/01/2024 63
Để thu được một loại đồng thau, người ta pha chế đồng và kẽm nguyên chất theo tỉ lệ 6 : 4. Tính khối lượng đồng nguyên chất cần thiết để sản xuất 5 kg đồng thau.
A. 0,5 kg;
A. 0,5 kg;
B. 2 kg;
B. 2 kg;
C. 3 kg;
C. 3 kg;
D. 4 kg.
D. 4 kg.
Trả lời:
Đáp án đúng là: C.
Gọi x (kg) và y (kg) lần lượt là khối lượng đồng và kẽm cần thiết để sản xuất 10 kg đồng thau (x > 0, y > 0).
Theo đề bài ta có x + y = 10 và .
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Suy ra do đó x = 6.0,5 = 3;
Vậy khối lượng đồng nguyên chất cần thiết để sản xuất 5 kg đồng thau lần lượt là 3 kg.
Đáp án đúng là: C.
Gọi x (kg) và y (kg) lần lượt là khối lượng đồng và kẽm cần thiết để sản xuất 10 kg đồng thau (x > 0, y > 0).
Theo đề bài ta có x + y = 10 và .
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
Suy ra do đó x = 6.0,5 = 3;
Vậy khối lượng đồng nguyên chất cần thiết để sản xuất 5 kg đồng thau lần lượt là 3 kg.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giá trị của x, y, z thoả mãn \(x = \frac{y}{2} = \frac{z}{3}\) và 4x – 3y + 2z = 36 là:
Câu 2:
Cứ 100 kg thóc thì cho 65 kg gạo. Hỏi 3 tấn thóc thì cho số kg gạo là:
Câu 4:
Cho \[\frac{{ - 6}}{x} = \frac{9}{{ - 15}}\]. Giá trị x thoả mãn là:
Câu 5:
Chọn câu đúng.
Cho biết 9x = 5y và 3x – 2y = 12. Giá trị x và y là:
Câu 6:
Giá trị \(x \in \mathbb{Z}\) thoả mãn \(\frac{1}{2} - \left( {\frac{1}{3} + \frac{3}{4}} \right) \le x \le \frac{1}{{24}} - \left( {\frac{1}{8} - \frac{1}{3}} \right)\) là:
Câu 7:
Biết \(\frac{{x + 1}}{3} = \frac{{y - 2}}{4} = \frac{{z - 1}}{{13}}\) và 2x – 3y + z = 42. Giá trị của x, y, z là:
Câu 10:
Cho biết x và y là hai đại lượng tỉ lệ thuận. Biết hai giá trị x1, x2 của x có tổng bằng 6 thì hai giá trị tương ứng y1, y2 của y có tổng bằng – 2. Hai đại lượng x và y liên hệ với nhau bằng công thức nào?
Câu 11:
Viết số \({9.3^3}.\frac{1}{{81}}.27\) dưới dạng luỹ thừa của an ta được:
Câu 13:
Một thợ mộc 1 tuần làm được 15 sản phẩm. Hỏi để làm được 45 sản phẩm thì cần bao nhiêu ngày? Biết năng suất làm việc của người thợ đó không thay đổi.
Hướng dân giải
Câu 14:
Kết quả của phép tính \[13\frac{2}{7}:\left( {\frac{{ - 8}}{9}} \right) + 2\frac{5}{7}:\left( {\frac{{ - 8}}{9}} \right)\] là:
Câu 15:
Khẳng định nào dưới đây thể hiện hai đại lượng tỉ lệ thuận với nhau?