Câu hỏi:
21/12/2023 106Có bao nhiêu số tự nhiên gồm 4 chữ số, các chữ số đều nhỏ hơn 5 và đôi một khác nhau
A. 96;
B. 120;
C. 360;
D. 24.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Các chữ số đều nhỏ hơn 5 nên ta chỉ được chọn từ các số 0; 1; 2; 3; 4
Gọi số tự nhiên cần tìm có dạng \(\overline {abcd} \).
Chọn số a có 4 cách (vì a chọn tuỳ ý một trong các số 1; 2; 3; 4)
Chọn số b có 4 cách (vì các chữ số đôi một khác nhau nên b ≠ a, vậy b không chọn lại số a đã chọn nên b có 4 cách chọn)
Chọn số c có 3 cách (vì các chữ số đôi một khác nhau nên c ≠ a, c ≠ b vậy c không chọn lại số a, b đã chọn nên c có 3 cách chọn)
Chọn số d có 2 cách (vì các chữ số đôi một khác nhau nên b ≠ a, d ≠ b, d ≠ c vậy d không chọn lại số a, b, c đã chọn nên d có 2 cách chọn)
Theo quy tắc nhân ta có số các số tự nhiên gồm 4 chữ số, các chữ số đều lớn hơn 5 và đôi một khác nhau là: 4.4.3.2 = 96 (số)
Hướng dẫn giải
Đáp án đúng là: A
Các chữ số đều nhỏ hơn 5 nên ta chỉ được chọn từ các số 0; 1; 2; 3; 4
Gọi số tự nhiên cần tìm có dạng \(\overline {abcd} \).
Chọn số a có 4 cách (vì a chọn tuỳ ý một trong các số 1; 2; 3; 4)
Chọn số b có 4 cách (vì các chữ số đôi một khác nhau nên b ≠ a, vậy b không chọn lại số a đã chọn nên b có 4 cách chọn)
Chọn số c có 3 cách (vì các chữ số đôi một khác nhau nên c ≠ a, c ≠ b vậy c không chọn lại số a, b đã chọn nên c có 3 cách chọn)
Chọn số d có 2 cách (vì các chữ số đôi một khác nhau nên b ≠ a, d ≠ b, d ≠ c vậy d không chọn lại số a, b, c đã chọn nên d có 2 cách chọn)
Theo quy tắc nhân ta có số các số tự nhiên gồm 4 chữ số, các chữ số đều lớn hơn 5 và đôi một khác nhau là: 4.4.3.2 = 96 (số)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Câu 2:
Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số?
Câu 3:
Từ các chữ số 0; 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau và phải có mặt chữ số 2.
Câu 4:
Từ các chữ số 0; 1; 2; 3; 4; 5; 8 lập được bao nhiêu số có ba chữ số đôi một khác nhau, chia hết cho 2 và 3
Câu 5:
Có bao nhiêu số tự nhiên có 3 chữ số khác nhau và chia hết cho 3 được lập từ các số 1; 2; 3; 4; 5.
Câu 6:
Một bàn dài có 2 dãy ghế đối diện nhau, mỗi dãy gồm có 5 ghế. Người ta muốn xếp chỗ ngồi cho 5 học sinh trường A và 5 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp chỗ ngồi để bất kì 2 học sinh nào ngồi đối diện thì khác trường nhau.
Câu 7:
Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn:
Câu 8:
Gia đình bạn Dương đự định chọn một địa điểm du lịch ở Quy Nhơn, sau đó đi tham quan tiếp một địa điểm ở Đà Nẵng. Biết rằng, nếu chọn Quy Nhơn có 5 địa điểm tham quan (bao gồm: Tây Quy Nhơn, Sân bay Phù Cát, Nam Quy Nhơn, Cầu Thị Nại, Kì Co – eo gió), nếu chọn Đà Nẵng thì có 7 địa điểm tham quan (bao gồm: Hải Vân, Sơn Trà, Mỹ Khê, Hội An, Ngũ Hành Sơn, Bà Nà, Cù Lao Chàm). Hỏi gia đình bạn Dương có bao nhiêu cách để chọn hai địa điểm ở Quy Nhơn và Đà Nẵng để tham quan theo dự định trên?
Câu 9:
Có 7 quả cầu đỏ khác nhau, 5 quả cầu vàng khác nhau và 3 quả cầu trắng khắc nhau. Hỏi có bao nhiêu cách lấy 3 quả cầu có đủ ba màu.
Câu 10:
Từ các chữ số 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số
Câu 11:
Lớp 10A có 20 học sinh nam và 15 học sinh nữ. Thầy giáo có bao nhiêu cách chọn ra hai học sinh một nam, một nữ để thi đấu cầu lông đôi nam nữ.
Câu 12:
Cho các số 0; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau
Câu 13:
Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên lẻ có bốn chữ số?
Câu 14:
Cho 7 chữ số 0; 2; 3; 4; 5; 6 ; 7 số các số tự nhiên lẻ có 3 chữ số lập thành từ các chữ số trên