Có bao nhiêu số tự nhiên có 4 chữ số chia hết cho 5
Có bao nhiêu số tự nhiên có 4 chữ số chia hết cho 5?
Có bao nhiêu số tự nhiên có 4 chữ số chia hết cho 5?
Gọi số có 4 chữ số cần tìm có dạng: và a, b, c, d Î A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, a ¹ 0.
Để chia hết cho 5 thì d phải thuộc tập hợp {0; 5}, do đó có 2 cách chọn d.
+ Trường hợp 1: d = 0.
Chọn a Î A \ {0} có 9 cách chọn
Chọn 2 số b, c Î A có 10.10 = 100 (cách chọn).
Do đó có: 9.100 = 900 số tự nhiên có 4 chữ số có chữ số tận cùng là 0.
+ Trường hợp 2: d = 5.
Chọn a Î A \ {0} có 9 cách chọn
Chọn 2 số b, c Î A có 10.10 = 100 (cách chọn).
Do đó có: 9.100 = 900 số tự nhiên có 4 chữ số có chữ số tận cùng là 0.
Vì hai trường hợp là rời nhau, vậy theo quy tắc cộng có 900 + 900 = 1800 số tự nhiên chia hết cho 5.