Chứng tỏ rằng 12n+1/30n+2 là phân số tối giản (n ∈ ℕ).

Chứng tỏ rằng 12n+130n+2  là phân số tối giản (n ℕ).

Trả lời

Để chứng minh 12n+130n+2  là phân số tối giản (n ℕ), ta cần chứng minh phân số này có tử và mẫu là hai số nguyên tố cùng nhau (ước chung lớn nhất của hai số đó bằng 1).

Gọi d là ước chung của 12n + 1 và 30n + 2 (n ℕ).

12n+1    d30n+2    d5.12n+1    d2.30n+2    d60n+5    d60n+4    d

(60n + 5) – (60n + 4) d.

1 d.

d = 1.

Do đó 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau.

Vậy phân số 12n+130n+2  là phân số tối giản (n ℕ).

 

Câu hỏi cùng chủ đề

Xem tất cả