Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P -1)(P + 1) chia hết cho 24

Chứng minh rằng: Nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24.

Trả lời

Vì P là số nguyên tố lớn hơn 3

Nên P không chia hết cho 2 và 3 

Ta có: P không chia hết cho 2

Suy ra P – 1 và P + 1 là 2 số chẵn liên tiếp

Do đó (P – 1)(P + 1) chia hết cho 8                        (1)

Mặt khác: P không chia hết cho 3

+) Nếu P = 3k +1 thì P – 1 = 3k 3

Suy ra (P – 1)(P + 1) chia hết cho 3

+) Nếu P = 3k + 2 thì P + 1 = 3k + 3

Suy ra (P – 1)(P + 1) chia hết cho 3

Do đó P không chia hết cho 3 thì (P – 1)(P + 1) chia hết cho 3             (2)

Từ (1) và (2) suy ra (P – 1)(P + 1) chia hết cho 8 và 3

Mà (8; 3) = 1

Suy ra (P – 1)(P + 1) chia hết cho 24

Vậy nếu P là số nguyên tố lớn hơn 3 thì (P – 1)(P + 1) chia hết cho 24.

Câu hỏi cùng chủ đề

Xem tất cả