Chứng minh rằng: a) 2.x^2 + căn 3. x + 1 > 0 với mọi x ∈ ℝ; b) x^2 + x + 1/4 >=0 với mọi x ∈ ℝ

Bài 7 trang 10 SBT Toán 10 Tập 2: Chứng minh rằng:

a) 2x2+3x+1>0 với mọi x ∈ ℝ;

b) x2+x+140với mọi x ∈ ℝ,

c) x2<2x+3 với mọi x ∈ ℝ.

 

Trả lời

a) Tam thức bậc hai 2x2+3x+1 có a = 2 > 0, ∆ = 3 – 4.2.1 = –5 < 0 với mọi x ∈ ℝ. Như vậy 2x2+3x+1>0 với mọi x ∈ ℝ.

b) Tam thức bậc hai x2+x+14 có a = 1 > 0, ∆ = 1 – 4.1.14 = 0 nên x2+x+140 với mọi x ∈ ℝ.

c) Tam thức bậc hai –x2 + 2x – 3 có a = –1 < 0, ∆ = 4 – 4.( –1).( –3) = –8 < 0 với mọi x ∈ ℝ. Như vậy –x2 + 2x – 3 < 0 với mọi x ∈ ℝ hay x2<2x+3 với mọi x ∈ ℝ.

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Bài tập cuối chương 6

Bài 1: Dấu của tam thức bậc hai

Bài 2: Giải bất phương trình bậc hai một ẩn

Bài 3: Phương trình quy về phương trình bậc hai

Bài tập cuối chương 7

Câu hỏi cùng chủ đề

Xem tất cả