Chứng minh: căn bậc hai của a^2 + b^2 + căn bậc hai của c^2 + d^2 lớn hơn bằng( a + c)^2 + ( b + d)^2, a, b, c, d thuộc R
16
13/08/2024
Chứng minh: \(\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} ,\;\forall a,\;b,\;c,\;d \in \mathbb{R}\).
Trả lời
Lời giải
Bất đẳng thức cần chứng minh
\( \Leftrightarrow {a^2} + {b^2} + {c^2} + {d^2} + 2\sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \ge {\left( {a + c} \right)^2} + {\left( {b + d} \right)^2}\)
\( \Leftrightarrow ac + bd \le \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \) (1)
• Nếu ac + bd < 0: BĐT luôn đúng
• Nếu ac + bd ³ 0 thì (1) tương đương
(ac + bd)2 £ (a2 + b2)(c2 + d2)
Û (ac)2 + (bd)2 + 2abcd £ (ac)2 + (ad)2 + (bc)2 + (bd)2
Û (ad)2 + (bc)2 − 2abcd ³ 0
Û (ad − bc)2 ³ 0 (luôn đúng).
Vậy bài toán được chứng minh.