Chứng minh bất đẳng thức sinx < x với mọi x > 0 và sinx > x với mọi x < 0

Chứng minh bất đẳng thức sinx < x với mọi x > 0 và sinx > x với mọi x < 0.

Trả lời

Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)

Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\)

Do đó hàm số đồng biến trên \(\left[ {0;\left. {\frac{\pi }{2}} \right)} \right.\)

Từ đó với mọi \(x \in \left( {0;\frac{\pi }{2}} \right)\) ta có:

f(x) > f(0) = 0

Suy ra x – sinx > 0; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)

x > sinx; \(\forall x \in \left( {0;\frac{\pi }{2}} \right)\)

Với \(x \ge \frac{\pi }{2}\) thì x > 1 ≥ sinx

Vậy sinx < x với mọi x > 0

Xét hàm số f(x) = x – sinx liên tục trên nửa khoảng \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)

Đạo hàm f’ = 1 – cosx > 0 với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\)

Do đó hàm số đồng biến trên \(\left( {\frac{{ - \pi }}{2};\left. 0 \right]} \right.\)

Từ đó với mọi \(x \in \left( { - \frac{\pi }{2};0} \right)\) ta có:

f(x) < f(0) = 0

Suy ra x – sinx < 0; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)

x < sinx; \(\forall x \in \left( { - \frac{\pi }{2};0} \right)\)

Với \(x \le \frac{\pi }{2}\) thì \(x \le \frac{{ - \pi }}{2} < - 1 \le {\mathop{\rm s}\nolimits} {\rm{inx}}\)

Vậy sinx > x với mọi x < 0.

Câu hỏi cùng chủ đề

Xem tất cả