Cho (x – y)2 + (y – z)2 + (z – x)2 = 4(x2 + y2 + z2 – xy – yz – zx). Chứng minh x = y = z.
Cho (x – y)2 + (y – z)2 + (z – x)2 = 4(x2 + y2 + z2 – xy – yz – zx). Chứng minh x = y = z.
Cho (x – y)2 + (y – z)2 + (z – x)2 = 4(x2 + y2 + z2 – xy – yz – zx). Chứng minh x = y = z.
Ta có (x – y)2 + (y – z)2 + (z – x)2 = 4(x2 + y2 + z2 – xy – yz – zx).
⇔ x2 – 2xy + y2 + y2 – 2yz + z2 + z2 – 2zx + x2 = 4(x2 + y2 + z2 – xy – yz – zx).
⇔ 2x2 + 2y2 + 2z2 – 2xy – 2yz – 2zx = 4(x2 + y2 + z2 – xy – yz – zx).
⇔ 2(x2 + y2 + z2 – xy – yz – zx) = 4(x2 + y2 + z2 – xy – yz – zx).
⇔ 2(x2 + y2 + z2 – xy – yz – zx) = 0.
⇔ x2 – 2xy + y2 + y2 – 2yz + z2 + z2 – 2zx + x2 = 0.
⇔ (x – y)2 + (y – z)2 + (z – x)2 = 0.
Vậy ta có điều phải chứng minh.