Cho x, y  là các số dương thỏa mãn x lớn hơn hoặc bằng 2y.  Tìm giá trị nhỏ

Cho x, y  là các số dương thỏa mãn x2y.  Tìm giá trị nhỏ nhất của biểu thức M với  M=x2+y2xy.

Trả lời

Phương pháp

Áp dụng bất đẳng thức Cô-si: với a,b>0  thì  a+b2ab

Cách giải

Ta có:  x,y>0;x2yxy2

 M=x2+y2xy=x2xy+y2xy=xy+yx=x4y+yx+3x4y2x4y.yx+3x4y=2.14+34.2=52

Dấu “=” xảy ra khi  x4y=yxxy=2x2=4y2x=2yx=2yx=2yx=2yx=2y

Vậy Mmin=52  khi  x=2y.

Câu hỏi cùng chủ đề

Xem tất cả