Cho ( x + căn bậc hai của x^2 + 1)( y + căn bậc hai của y^2 + 1) = 1. Tính x + y.
Lời giải
Ta có: \[\left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = 1\]
\( \Leftrightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \left( {x + \sqrt {{x^2} + 1} } \right)\left( {\sqrt {{x^2} + 1} - x} \right)\)
\( \Rightarrow y + \sqrt {{y^2} + 1} = \sqrt {{x^2} + 1} - x\)
\( \Leftrightarrow x + y = \sqrt {{x^2} + 1} - \sqrt {{y^2} + 1} \) (1)
Tương tự, ta có:
\( \Leftrightarrow \left( {x + \sqrt {{x^2} + 1} } \right)\left( {y + \sqrt {{y^2} + 1} } \right) = \left( {y + \sqrt {{y^2} + 1} } \right)\left( {\sqrt {{y^2} + 1} - y} \right)\)
\[ \Rightarrow x + \sqrt {{x^2} + 1} = \sqrt {{y^2} + 1} - y\]
\[ \Leftrightarrow x + y = \sqrt {{y^2} + 1} - \sqrt {{x^2} + 1} \] (2)
Cộng vế với vế của (1) và (2) thì x + y = 0
Vậy giá trị của biểu thức x + y là 0.