Câu hỏi:
12/03/2024 50
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC, G là trọng tâm tam giác BCD. Giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng
A. qua M và song song với AB;
B. qua N và song song với BD;
C. qua G và song song với CD;
D. qua G và song song với BC.
Trả lời:
Đáp án đúng là: C
Gọi d là giao tuyến của (GMN) và (BCD).
Vì M và N là trung điểm của AD và AC nên MN là đường trung bình của tam giác ACD
Suy ra MN // CD.
Ta có: .
⇒ (GMN) ∩ (BCD) = d // MN // CD với d đi qua G.
Vậy đáp án đúng là C.
Đáp án đúng là: C
Gọi d là giao tuyến của (GMN) và (BCD).
Vì M và N là trung điểm của AD và AC nên MN là đường trung bình của tam giác ACD
Suy ra MN // CD.
Ta có: .
⇒ (GMN) ∩ (BCD) = d // MN // CD với d đi qua G.
Vậy đáp án đúng là C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thoi ABCD và S nằm ngoài (ABCD). Lấy điểm E trên SA sao cho 2SE = EA; Lấy điểm F trên SB sao cho 2SF = FB. Điểm H nằm trên cạnh SC không trùng với S. Giao tuyến của (EFH) và (SCD) là
Cho hình thoi ABCD và S nằm ngoài (ABCD). Lấy điểm E trên SA sao cho 2SE = EA; Lấy điểm F trên SB sao cho 2SF = FB. Điểm H nằm trên cạnh SC không trùng với S. Giao tuyến của (EFH) và (SCD) là
Câu 2:
Cho hình bình hành ABCD và S nằm ngoài (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng
Cho hình bình hành ABCD và S nằm ngoài (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là một đường thẳng song song với đường thẳng
Câu 3:
Cho tứ diện ABCD và ba điểm P, Q, R lần lượt trên cạnh AB, CD và BC. Biết rằng PR // AC. Giao điểm S của mp(PQR) và cạnh AD là
Cho tứ diện ABCD và ba điểm P, Q, R lần lượt trên cạnh AB, CD và BC. Biết rằng PR // AC. Giao điểm S của mp(PQR) và cạnh AD là
Câu 5:
Cho hình bình hành ABCD và S nằm ngoài (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là
Cho hình bình hành ABCD và S nằm ngoài (ABCD). Giao tuyến của hai mặt phẳng (SAB) và (SCD) là
Câu 6:
Cho hình bình hành ABCD và S nằm ngoài (ABCD), O là giao điểm của AC và BD. M là trung điểm cạnh SC. Trong các khẳng định sau, khẳng định sai là
Câu 7:
Cho tứ diện ABCD. M và N là trung điểm của AD và AC. G là trọng tâm tam giác BCD. Giao tuyến của 2 mặt phẳng (GMN) và (BCD) là đường thẳng
Cho tứ diện ABCD. M và N là trung điểm của AD và AC. G là trọng tâm tam giác BCD. Giao tuyến của 2 mặt phẳng (GMN) và (BCD) là đường thẳng
Câu 8:
Cho hình thoi ABCD và S nằm ngoài (ABCD). O là giao điểm của AC và BD. E và F lần lượt là trung điểm của CD và AE. Giao tuyến của (SFO) và (SCD) là
Câu 9:
Cho hình bình hành ABCD và điểm S nằm ngoài (ABCD). E là một điểm bất kì thuộc cạnh SA. Giao tuyến của mặt phẳng (ECD) và (SAB) là
Cho hình bình hành ABCD và điểm S nằm ngoài (ABCD). E là một điểm bất kì thuộc cạnh SA. Giao tuyến của mặt phẳng (ECD) và (SAB) là
Câu 10:
Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB và CD. M và N là trung điểm AD và BC. G là trọng tâm tam giác SAB. Giao tuyến của (SAB) và (MNG) là:
Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB và CD. M và N là trung điểm AD và BC. G là trọng tâm tam giác SAB. Giao tuyến của (SAB) và (MNG) là: