Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC

Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC. Trong tam giác BCD lấy điểm M sao cho hai đường thẳng KM và CD cắt nhau tại I. Tìm thiết diện của tứ diện với (HKM) trong hai trường hợp:

a) I nằm trong đoạn CD.

b) I nằm ngoài đoạn CD.

Trả lời

a) I nằm trong đoạn CD

Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC (ảnh 1)

Dễ thấy \((HKM) \equiv (HKI)\) và (HKM) đã khép kín và cắt tất cả các mặt của hình chóp lần lượt theo các giao tuyến sau:

\(\begin{array}{l}(HKM) \cap (ABC) = HK\\(HKM) \cap (BCD) = KI\\(HKM) \cap (ACD) = IH\end{array}\)

Vậy thiết diện của hình chóp khi cắt bởi (HKM) là tam giác HKM.

b) I nằm ngoài đoạn CD

Cho tứ diện ABCD. Gọi H, K lần lượt là trung điểm của các cạnh AC, BC (ảnh 2)

+ Bước 1: Giao tuyến có sẵn HK

+ Bước 2: \((HKM) \equiv (HKI)\)

Trong (BCD) gọi giao điểm của KI và BD là E

Trong (ACD) gọi giao điểm của HI và AD là F

+ Bước 3 : Lúc này mặt (HKM) đã khép kín và cắt tất cả các mặt của hình chóp lần lượt theo các giao tuyến sau:

\(\begin{array}{l}(HKM) \cap (ABC) = HK\\(HKM) \cap (BCD) = KE\\(HKM) \cap (ABD) = EF\\(HKM) \cap (ACD) = FH\end{array}\)

Vậy thiết diện của hình chóp khi cắt bởi (HKM) là tứ giác HKEF.

Câu hỏi cùng chủ đề

Xem tất cả