Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc

Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc cạnh BC (P không trùng trung điểm cạnh BC). Tìm thiết diện của tứ diện cắt bởi mặt phẳng (MNP).

Trả lời
Cho tứ diện ABCD có M, N lần lượt là trung điểm của AB, CD và P là một điểm thuộc (ảnh 1)

Trong mặt phẳng (ABC) kéo dài MP và AC cắt nhau tại I.

Trong mặt phẳng (ACD) kéo dài IN cắt AD tại Q

Ta có:

(ABC) Ç (MNP) = MP

(BCD) Ç (MNP) = PN

(ACD) Ç (MNP) = NQ

(ABD) Ç (MNP) = QM

Vậy thiết diện của tứ diện cắt bởi mặt phẳng (MNP) là tứ giác MNPQ.

Câu hỏi cùng chủ đề

Xem tất cả