Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD

Bài 2 trang 76 SBT Toán 11 Tập 2Cho tứ diện ABCD có hai mặt phẳng (ABC) và (ABD) cùng vuông góc với (DBC). Vẽ các đường cao BE, DF của tam giác BCD, đường cao DK của tam giác ACD.

a) Chứng minh hai mặt phẳng (ABE) và (DFK) cùng vuông góc với (ADC).

b) Gọi O và H là trực tâm ∆BCD và ∆ACD. Chứng minh OH vuông góc với (ADC).

Trả lời

Cho tứ diện ABCD có hai mặt phẳng ABC và ABD cùng vuông góc với DBC Vẽ các đường cao BE DF

a)Từ giả thiết suy ra AB ⊥ (BDC)  AB ⊥ DC.

Lại có: BE ⊥ DC.

 DC ⊥ (ABE) hay (ADC) ⊥ (ABE). (1)

Ta có: Cho tứ diện ABCD có hai mặt phẳng ABC và ABD cùng vuông góc với DBC Vẽ các đường cao BE DF.

Mà DK ⊥ AC.

Do đó AC ⊥ (DFK) hay (ADC) ⊥ (DFK). (2)

b)Dễ thấy O, H lần lượt là các giao điểm của DF và BE, AE và DK.

 (ABE)  (DFK) = OH. (3)

Từ (1), (2) và (3)  OH ⊥ (ADC).

Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả