Cho tm giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của BC

Cho ∆ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của BC, D là điểm đối xứng với A qua M. trên tia đối của tia HA lấy điểm E sao cho HE = HA.

a) Chứng minh HM // ED và HM =\(\frac{1}{2}\)DE.

b) Chứng minh ABDC là hình chữ nhật.

c) Gọi P, Q lần lượt là hình chiếu của E lên BD và CD, EP cắt AD tại K. Chứng minh DE = DK.

d) Chứng minh 3 điểm H, P, Q thẳng hàng.

Trả lời
Cho tm giác ABC vuông tại A (AB < AC), đường cao AH. Gọi M là trung điểm của BC (ảnh 1)

a) Vì AH = HE và AM = MD

HM là đường trung bình của ΔABC

HM // ED và HM = \(\frac{1}{2}\)DE 

b) Vì AM = MD và BM = MC

ABCD là hình bình hành

\(\widehat {BAC} = 90^\circ \) ABCD là hình chữ nhật

c) Vì ABCD là hình chữ nhật

\(\widehat {BDA} = 90^\circ \)

Vì ED // BC \(\widehat {CBD} = 90^\circ \)

\(\widehat {BDA} = \widehat {CBD} = 90^\circ \)

Xét tam giác KPD và tam giác EPD có:

\(\widehat {KPD} = \widehat {EPD} = 90^\circ \)

PD là cạnh chung 

\(\widehat {KDP} = \widehat {EDP} = 45^\circ \)

ΔKPD = ΔEPD (g.c.g)

DE = DK(2 cạnh tương ứng)

d) Vì EP = PK và EH = AH

HP là đường trung bình của ΔAEK

HP // AD (1)

Tứ giác EPDQ có 3 góc vuông tại đỉnh P, D, Q

EPDQ là hình chữ nhật

\(\widehat {{Q_1}} = \widehat {{D_2}}\)

\(\widehat {{D_1}} = \widehat {{D_2}}\)

\[\widehat {{Q_1}} = \widehat {{D_1}}\]

\(\widehat {{Q_2}} = \widehat {{D_2}}\)(cùng phụ với hai góc bằng nhau)

PQ // AD (2)

Từ (1) và (2) HP // AD

H, P, Q thẳng hàng.

Câu hỏi cùng chủ đề

Xem tất cả