Cho tan alpha = 2. Khi đó giá trị của biểu thức A = (sin^2 alpha - 2sin alpha . cos alpha)

Cho tan α = 2. Khi đó giá trị của biểu thức \(A = \frac{{{{\sin }^2}\alpha - 2\sin \alpha .\cos \alpha }}{{{{\cos }^2}\alpha + 3{{\sin }^2}\alpha }}\) bằng:

A. 4.

B. 0.

C. 1.

D. 2.

Trả lời

Đáp án đúng là: B

Vì tan α = 2 xác định nên cos α ≠ 0, hay cos2 α ≠ 0, do đó chia cả tử và mẫu của A cho cos2 α ta được:

\(A = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - \frac{{2\sin \alpha .\cos \alpha }}{{{{\cos }^2}\alpha }}}}{{\frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{3{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }}}} = \frac{{{{\tan }^2}\alpha - 2\tan \alpha }}{{1 + 3{{\tan }^2}\alpha }} = \frac{{{2^2} - 2.2}}{{1 + {{3.2}^2}}} = 0\).

Câu hỏi cùng chủ đề

Xem tất cả