Cho tam giác ABC, điểm G nằm trong tam giác sao cho SAGB = SAGC = SBGC. Chứng minh G là trọng tâm của tam giác ABC.
Lời giải
Gọi N là giao điểm của AG và BC.
Kẻ BH ^ AN (H Î AN) và CK ^ AN (K Î AN).
Ta có \({S_{\Delta GAB}} = \frac{{AG\,.\,BH}}{2};\;{S_{\Delta GCA}} = \frac{{AG\,.\,CK}}{2}\)
Mà SΔAGB = SΔAGC nên \(\frac{{AG\,.\,BH}}{2} = \frac{{AG\,.\,CK}}{2}\)
Suy ra BH = CK.
Xét DBHN và DCKN có:
\(\widehat {BHN} = \widehat {CKN} = 90^\circ \)
BH = CK (chứng minh trên)
\(\widehat {HNB} = \widehat {KNC}\) (hai góc đối đỉnh)
Do đó ∆BHN = ∆CKN (g.c.g).
Suy ra BN = CN (hai cạnh tương ứng)
Hay AN là đường trung tuyến của tam giác ABC.
Chứng minh tương tự, ta có CG cũng là đường trung tuyến của tam giác ABC.
Tam giác ABC có AN, CG là hai đường trung tuyến của tam giác
Mà AN và CG cắt nhau tại G nên G là trọng tâm của tam giác ABC.
Vậy nếu diện tích các tam giác GAB, GBC và GCA bằng nhau thì G là trọng tâm của tam giác đó.