Câu hỏi:

01/02/2024 115

Cho tam giác MNP có chu vi bằng 70 cm, biết MN : NP = 2 : 3 và NP : MP = 4 : 5. Trong ba góc của tam giác MNP, góc nào nhỏ nhất?

A. Góc M;

B. Góc N;

C. Góc P;

Đáp án chính xác

D. Ba góc bằng nhau.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có MN : NP = 2 : 3 nên \(\frac{{MN}}{2} = \frac{{NP}}{3}\) suy ra \(\frac{{MN}}{8} = \frac{{NP}}{{12}}\).

Ta có NP : MP = 4 : 5 nên \(\frac{{NP}}{4} = \frac{{MP}}{5}\) suy ra \(\frac{{NP}}{{12}} = \frac{{MP}}{{15}}\).

Do đó \(\frac{{MN}}{8} = \frac{{NP}}{{12}} = \frac{{MP}}{{15}}\).

Lại có chu vi tam giác MNP bằng 70 cm nên MN + NP + MP = 70.

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{MN}}{8} = \frac{{NP}}{{12}} = \frac{{MP}}{{15}} = \frac{{MN + NP + MP}}{{8 + 12 + 15}} = \frac{{70}}{{35}} = 2\).

Suy ra:

• \(\frac{{MN}}{8} = 2\) nên MN = 2 . 8 = 16 (cm);

• \(\frac{{NP}}{{12}} = 2\) nên NP = 2 . 12 = 24 (cm);

• \(\frac{{MP}}{{15}} = 2\) nên MP = 2 . 15 = 30 (cm).

Trong tam giác MNP có MN < NP < MP nên \(\widehat P < \widehat M < \widehat N\) (Theo quan hệ giữa góc và cạnh đối diện trong tam giác).

Vậy góc P là góc nhỏ nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tm giác ABC vuông tại C có CH là đường cao. Trên cạnh AB lấy điểm M sao cho BM = BC. Kẻ MN vuông góc với AC tại N. Chọn khẳng định đúng:

Xem đáp án » 01/02/2024 79

Câu 2:

Cho ∆ABC vuông tại A, M là trung điểm của AC. Kẻ AD và CE vuông góc với BM. Chọn khẳng định đúng:

Xem đáp án » 01/02/2024 68

Câu hỏi mới nhất

Xem thêm »
Xem thêm »