Cho tam giác đều ABC có cạnh bằng a. Hãy tính bán kính đường tròn ngoại tiếp
Cho tam giác đều ABC có cạnh bằng a. Hãy tính bán kính đường tròn ngoại tiếp tam giác đó.
Cho tam giác đều ABC có cạnh bằng a. Hãy tính bán kính đường tròn ngoại tiếp tam giác đó.
Theo định lí sin ta có:
\(\frac{a}{{\sin {\rm{A}}}} = 2{\rm{R}} \Leftrightarrow R = \frac{a}{{2\sin {\rm{A}}}}\)
Tam giác ABC đều nên \(\widehat A = 60^\circ \)
Suy ra \(\sin {\rm{A}} = \frac{{\sqrt 3 }}{2}\)
Khi đó \(R = \frac{a}{{2\sin {\rm{A}}}} = \frac{a}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{a}{{\sqrt 3 }}\)
Vậy bán kính đường tròn ngoại tiếp tam giác đó là \(\frac{a}{{\sqrt 3 }}\).