Câu hỏi:
19/12/2023 70
Cho tam giác có: a = 8, b = 11, \(\widehat C = 30^\circ \). Xét dạng của tam giác ABC.
A. Tam giác ABC nhọn;
B. Tam giác ABC tù;
C. Tam giác ABC đều;
D. Tam giác ABC vuông.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Ta có: \({c^2} = {a^2} + {b^2} - 2ab.\cos C\)
\({c^2} = {8^2} + {11^2} - 2.8.11.\cos 30^\circ = 185 - 88\sqrt 3 \)\( \Rightarrow c \approx 5,71\).
Ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \approx \frac{{{{11}^2} + {{5,71}^2} - {8^2}}}{{2.11.5,71}} \approx 0,71\).
\( \Rightarrow \widehat A \approx 44,5^\circ \).
Do đó: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) \approx 105,5^\circ \).
Vậy tam giác ABC là tam giác tù.
Hướng dẫn giải:
Đáp án đúng là: B.
Ta có: \({c^2} = {a^2} + {b^2} - 2ab.\cos C\)
\({c^2} = {8^2} + {11^2} - 2.8.11.\cos 30^\circ = 185 - 88\sqrt 3 \)\( \Rightarrow c \approx 5,71\).
Ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} \approx \frac{{{{11}^2} + {{5,71}^2} - {8^2}}}{{2.11.5,71}} \approx 0,71\).
\( \Rightarrow \widehat A \approx 44,5^\circ \).
Do đó: \(\widehat B = 180^\circ - \left( {\widehat A + \widehat C} \right) \approx 105,5^\circ \).
Vậy tam giác ABC là tam giác tù.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có BC = a, CA = b, AB = c. Mệnh đề nào sau đây là đúng?
Câu 2:
Cho tam giác ABC có a = 9; b = 12; c = 15. Xét dạng của tam giác ABC
Câu 3:
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A vuông khi và chỉ khi a2 = b2 + c2;
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A vuông khi và chỉ khi a2 = b2 + c2;
Câu 4:
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A nhọn khi và chỉ khi a2 < b2 + c2;
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A nhọn khi và chỉ khi a2 < b2 + c2;
Câu 5:
Tam giác ABC thỏa mãn \(\frac{{\sin B}}{{\sin A}} = 2.\cos C\). Khi đó:
Câu 6:
Xác định dạng của tam giác ABC biết S = p(p – a) với S là diện tích tam giác ABC và p là nửa chu vi tam giác.
Câu 7:
Cho tam giác ABC thỏa mãn sin C = 2sin Bcos A. Chứng minh rằng tam giác ABC cân.
Câu 8:
Cho a2, b2, c2 là độ dài các cạnh của một tam giác nào đó và a, b, c là độ dài các cạnh của tam giác ABC. Khi đó, khẳng định nào sau đây đúng?
Câu 9:
Cho tam giác ABC thỏa mãn \(\frac{a}{{\cos A}} = \frac{b}{{\cos B}}\). Xác định dạng của tam giác ABC.
Câu 10:
Cho tam giác ABC có a = 4, b = 6, c = 8. Khẳng định nào sau đây là đúng?
Câu 11:
Cho tam giác ABC có: \(\widehat B = 60^\circ \), a = 12, R = 4\(\sqrt 3 \). Xác định dạng của tam giác?
Câu 12:
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A tù khi và chỉ khi a2 > b2 + c2.
Cho tam giác ABC. Chứng minh các khẳng định sau:
Góc A tù khi và chỉ khi a2 > b2 + c2.
Câu 13:
Cho tam giác ABC có a = 10, c = 5\(\sqrt 3 \), \(\widehat B = 30^\circ \). Tìm mệnh đề đúng trong các mệnh đề sau?