Câu hỏi:
01/02/2024 67Cho tam giác ABD có AB < AD < BD và \(\widehat {ADB} = 32^\circ \). Trên cạnh BD lấy điểm C sao cho AB = CA = CB. Số đo của \(\widehat {{\rm{CAD}}}\) là
A. 20°;
B. 24°;
C. 28°;
D. 32°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Theo hình vẽ ta có: AB = AC = BC
Suy ra ∆ABC là tam giác đều.
Suy ra \(\widehat {{\rm{ACB}}} = 60^\circ \) (tính chất tam giác đều)
Ta có \(\widehat {{\rm{ACB}}} + \widehat {{\rm{ACD}}} = 180^\circ \) (hai góc kề nhau)
Hay \(60^\circ + \widehat {{\rm{ACD}}} = 180^\circ \)
Suy ra \(\widehat {{\rm{ACD}}} = 180^\circ - 60^\circ = 120^\circ \)
Xét ∆ACD có: \(\widehat {{\rm{CAD}}} + \widehat {{\rm{ACD}}} + \widehat {\rm{D}} = 180^\circ \) (tổng ba góc trong tam giác bằng 180°)
Hay \(\widehat {{\rm{CAD}}} + 120^\circ + 32^\circ = 180^\circ \)
Suy ra \(\widehat {{\rm{CAD}}} = 180^\circ - 120^\circ - 32^\circ = 28^\circ \)
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Theo hình vẽ ta có: AB = AC = BC
Suy ra ∆ABC là tam giác đều.
Suy ra \(\widehat {{\rm{ACB}}} = 60^\circ \) (tính chất tam giác đều)
Ta có \(\widehat {{\rm{ACB}}} + \widehat {{\rm{ACD}}} = 180^\circ \) (hai góc kề nhau)
Hay \(60^\circ + \widehat {{\rm{ACD}}} = 180^\circ \)
Suy ra \(\widehat {{\rm{ACD}}} = 180^\circ - 60^\circ = 120^\circ \)
Xét ∆ACD có: \(\widehat {{\rm{CAD}}} + \widehat {{\rm{ACD}}} + \widehat {\rm{D}} = 180^\circ \) (tổng ba góc trong tam giác bằng 180°)
Hay \(\widehat {{\rm{CAD}}} + 120^\circ + 32^\circ = 180^\circ \)
Suy ra \(\widehat {{\rm{CAD}}} = 180^\circ - 120^\circ - 32^\circ = 28^\circ \)
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC nhọn, đường cao AH. Lấy điểm D sao cho AB là trung trực của HD. Lấy điểm E sao cho AC là trung trực của HE. Gọi M là giao điểm của DE và AB, gọi N là giao điểm của DE và AC. Khẳng định nào sau đây là đúng?
Câu 2:
Trong các bộ ba độ dài đoạn thẳng dưới đây, bộ ba có thể là độ dài ba cạnh của một tam giác là
Câu 3:
Cho tam giác ABC có AH, BK, CL lần lượt là ba đường cao của tam giác ABC. Chọn khẳng định đúng:
Câu 4:
Cho tam giác MNP có trung tuyến MA, NC cắt nhau tại O. Biết MO = 2,5 cm, OC = 1 cm. Độ dài các đường trung tuyến MA, NC lần lượt là:
Câu 6:
Cho tam giác DEF có \(\widehat D = 38^\circ \) và \(\widehat E = 110^\circ .\) Độ dài các cạnh của ∆DEF sắp xếp theo thứ tự tăng dần là
Câu 7:
Cho ∆ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông góc với BC tại N. Từ C kẻ đường thẳng vuông góc với BM tại P. Gọi D là giao điểm của AB và CP. Khẳng định nào sau đây sai?
Câu 8:
Cho tam giác AOM có \(\widehat A = 52^\circ \). Ba đường phân giác cắt nhau tại I. Số đo góc MIO là:
Câu 11:
Sau khi đo bằng thước đo góc bạn An đã điền số đo các góc vào hai hình vẽ như sau:
Chọn khẳng định đúng:
Câu 12:
Cho góc nhọn \(\widehat {xOy}\), trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Đường trung trực của OA và đường trung trực của OB cắt nhau tại I.
Cho các khẳng định sau:
(I) OI là tia phân giác của \(\widehat {xOy}\);
(II) OI là đường trung trực của đoạn AB.
Chọn khẳng định đúng:
Câu 13:
Cho tam giác DEF có DM, EN là hai đường trung tuyến cắt nhau tại G. Kéo dài DM lấy điểm H sao cho MH = MD. Kéo dài EN lấy điểm K sao cho NK = NE. Chọn khẳng định sai?
Câu 14:
Cho ∆ABC cân tại A có BC = 9 cm; chu vi ∆ABC bằng 25 cm. Chọn khẳng định sai: