Câu hỏi:
30/01/2024 49
Cho ∆ABC vuông tại B và ∆DEF vuông tại E có AB = DE và BC = EF. Khi đó ∆ABC = ∆DEF theo trường hợp:
Cho ∆ABC vuông tại B và ∆DEF vuông tại E có AB = DE và BC = EF. Khi đó ∆ABC = ∆DEF theo trường hợp:
A. cạnh huyền – cạnh góc vuông;
A. cạnh huyền – cạnh góc vuông;
B. cạnh huyền – góc nhọn;
B. cạnh huyền – góc nhọn;
C. cạnh – góc – cạnh;
Đáp án chính xác
D. góc – cạnh – góc.
Trả lời:
Giải bởi Vietjack
Hướng dẫn giải
Đáp án đúng là: C
Xét ∆ABC và ∆DEF, có:
.
AB = DE (giả thiết)
BC = EF (giả thiết)
Do đó ∆ABC = ∆DEF (c.g.c)
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Xét ∆ABC và ∆DEF, có:
.
AB = DE (giả thiết)
BC = EF (giả thiết)
Do đó ∆ABC = ∆DEF (c.g.c)
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho ∆MNP vuông tại P và ∆XYZ vuông tại Z có MP = XZ. Để ∆MNP = ∆XYZ theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện gì?
Cho ∆MNP vuông tại P và ∆XYZ vuông tại Z có MP = XZ. Để ∆MNP = ∆XYZ theo trường hợp cạnh huyền – cạnh góc vuông thì cần thêm điều kiện gì?
Xem đáp án »
30/01/2024
52
Câu 9:
Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông không bằng nhau?
Trong các phương án sau, phương án nào chứa hình có hai tam giác vuông không bằng nhau?
Xem đáp án »
30/01/2024
40