Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA

Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.

a) Chứng minh: ∆MAB = ∆MDC.

b) Chứng minh: AB // CD và ∆ABC = ∆CDA.

c) Chứng minh: ∆BDC là tam giác vuông.

Trả lời
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của cạnh BC. Trên tia đối của tia MA  (ảnh 1)

a) Xét ∆MAB và ∆MDC có:

MB = MC (vì M là trung điểm CB)

\(\widehat {BMA} = \widehat {CMD}\)(2 góc đối đỉnh)

MA = MD

Nên: ∆MAB = ∆MDC (c.g.c).

b) Vì ∆MAB = ∆MDC nên \(\widehat {ABC} = \widehat {DCB}\)

Mà 2 góc này ở vị trí so le trong nên AB // CD

Mặt khác: AB vuông góc với AC (do tam giác ABC vuông tại A)

Nên: CD vuông góc với AC

Xét ∆ABC và ∆CDA có:

 AB = CD (do ∆MAB = ∆MDC)

\(\widehat {BAC} = \widehat {DCA} = 90^\circ \)

AC chung

Suy ra: ∆ABC = ∆CDA (c.g.c).

c) Xét ∆BDC và ∆CAB có:

AB = CD

\(\widehat {ABC} = \widehat {DCB}\)

BC là cạnh chung

Nên: ∆BDC = ∆CAB (c.g.c)

Suy ra: \(\widehat {BDC} = \widehat {CAB} = 90^\circ \)

Vậy tam giác BDC là tam giác vuông.

Câu hỏi cùng chủ đề

Xem tất cả