Cho tam giác ABC vuông tại A, có đường cao AH. Từ H kẻ HE vuông góc với AB tại E, HF vuông góc với

Cho tam giác ABC vuông tại A, có đường cao AH. Từ H kẻ HE vuông góc với AB tại E, HF vuông góc với AC tại F.

a) Cho biết AB = 3cm, ACB^  = 30°. Tính độ dài các đoạn AC, HA.

b) Chứng minh: BE.BA + CF.CA + 2.HB.HC = BC2.

Trả lời

Media VietJack

a) Ta có: AB = BC. sin ACB^

BC = 3 : sin30° = 6(cm)

AC = BC2AB2=6232=33  (cm)

Lại có: SABC = 12 AH.BC = 12 AB.AC AH = AB.ACBC=3.336=332

b) Áp dụng hệ thức lượng trong các tam giác BHA, CHA có:

BE.BA = BH2; CF. CA = HC2

BE.BA + CF.CA + 2.HB.HC = BH2 + HC2 + 2.HB.HC = (BH + CH)2 = BC2.

Vậy BE.BA + CF.CA + 2.HB.HC = BC2.

Câu hỏi cùng chủ đề

Xem tất cả