Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM song song với BC (M ∈ AB). Chứng minh tứ giác PCQM là hình chữ nhật.

Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM song song với BC (M  AB). Chứng minh tứ giác PCQM là hình chữ nhật.

Trả lời

Lời giải

Media VietJack

Vì tam giác ABC vuông cân tại C

Nên AC = BC, \(\widehat {CAB} = \widehat {CBA} = 45^\circ \)

Ta có PM // BC và AC CB

Suy ra PM AC

Do đó tam giác APM vuông tại P

Lại có \(\widehat {PAM} = 45^\circ \)

Suy ra \(\widehat {PAM} = \widehat {PMA} = 45^\circ \)

Do đó tam giác APM vuông cân tại P

Suy ra PA = PM

Mà PA = CQ (giả thiết)

Suy ra PM = CQ

Xét tứ giác PCQM có

PM = CQ

Mà PM // CQ

Suy ra PCQM là hình bình hành

Lại có: \(\widehat C = 90^\circ \)

Suy ra PCQM là hình chữ nhật

Vậy PCQM là hình chữ nhật.

Câu hỏi cùng chủ đề

Xem tất cả