Tam giác ABC vuông cân tại C ⇒ \(\widehat {CBA} = \widehat {CAB} = 45^\circ \)
Xét tam giác AME có: \(\widehat {AEM} = 90^\circ \); \(\widehat {EAM} = \widehat {CAB} = 45^\circ \)
⇒ ΔAME vuông cân tại E ⇒ AE = EM
CMTT ta có tam giác BMF vuông cân tại F ⇒ MF = BF
Xét tứ giác CEMF có \(\widehat {CEM} = \widehat {CFM} = \widehat {ECF} = 90^\circ \)
⇒ CEMF là hình chữ nhật
⇒ EM = CF, MF = CE
⇒ EM = CF = AE, MF = CE = BF
Tam giác ABC vuông cân tại C
⇒ Trung tuyến CD đồng thời là đường cao, phân giác
⇒CD ⊥ AB ⇒\(\widehat {BCD} = 45^\circ \)
Xét ΔAED và ΔCFD có:
AE = CF
AD = CD(tam giác ACD vuông cân tại D)
\(\widehat {DAE} = \widehat {DCF} = 45^\circ \)
⇒ ΔAED = ΔCDF(c.g.c)
⇒ DE = DF(1) (hai cạnh tương ứng) và \(\widehat {ADE} = \widehat {CDF}\) (hai góc tương ứng).
⇒ \(\widehat {ADE} + \widehat {CDE} = \widehat {CDF} + \widehat {CDE}\)
⇒ \(\widehat {ADC} = \widehat {EDF}\)
Mà \(\widehat {ADC} = 90^\circ \)(CD ⊥ AB)
⇒ \(\widehat {EDF} = 90^\circ \)(2)
Từ (1) và (2) suy ra tam giác DEF vuông cân tại D.