Cho tam giác ABC, lấy các điểm A’, B’, C’ không trùng với đỉnh của tam giác và lần lượt

Bài 56* trang 100 SBT Toán 10 Tập 1: Cho tam giác ABC, lấy các điểm A’, B’, C’ không trùng với đỉnh của tam giác và lần lượt thuộc các cạnh AB, BC, CA thỏa mãn AA'AB=BB'BC=CC'CA. Chứng minh hai tam giác ABC và A’B’C’ có cùng trọng tâm.

Trả lời

Đặt AA'AB=BB'BC=CC'CA=t (t > 0)

⇔ AA'=tABBB'=tBCCC'=tCA

⇒ AA'=tABBB'=tBCCC'=tCA (vì các điểm A’, B’, C’ lần lượt thuộc các cạnh AB, BC, CA)

Gọi G là trọng tâm tam giác ABC nên GA+GB+GC=0

Ta có: 

Sách bài tập Toán 10 Bài 5: Tích của một số với một vectơ - Cánh diều (ảnh 1)

Suy ra G cũng là trọng tâm của tam giác A’B’C’.

Xem thêm lời giải sách bài tập Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 3: Khái niệm vectơ

Bài 4: Tổng và hiệu của hai vectơ

Bài 5: Tích của một số với một vectơ

Bài 6: Tích vô hướng của hai vectơ

Bài ôn tập chương 4

Bài 1: Quy tắc cộng. Quy tắc nhân. Sơ đồ hình cây

Câu hỏi cùng chủ đề

Xem tất cả