Cho tam giác ABC, đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM cắt AB, AC lần lượt tại G, K. Chứng minh rằng HG = HK.

Cho tam giác ABC, đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM cắt AB, AC lần lượt tại G, K. Chứng minh rằng HG = HK.

Trả lời
Cho tam giác ABC, đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM cắt AB, AC lần lượt tại G, K. Chứng minh rằng HG = HK. (ảnh 1)

Ta có:GHF^+HGF^=90°  (do DGHF vuông tại F) và CHM^+CHK^=90°

Mà GHF^=CHK^   (đối đỉnh) nên HGF^=CHM^  hay HGA^=CHM^

Ta có: BAD^+ABD^=90°  (do DABD vuông tại D);

          BCF^+CBF^=90°  (do DBCF vuông tại F)

Do đó BAD^=BCF^  hay GAH^=MCH^

Xét DGAH và DCHM có: HGA^=CHM^và GAH^=MCH^

Do đó ΔGAH ΔHCMg.g

Suy ra GHHM=AHCM  (tỉ  số đồng dạng) (1)

Tương tự, ta có: ΔAHK ΔBMHg.g

Suy ra AHBM=HKMH  (tỉ số đồng dạng) (2)

Mặt khác: M là trung điểm của BC nên CM = BM (3)

Từ (1), (2) và (3) ta có:GHHM=HKMH , suy ra GH = HK.

Câu hỏi cùng chủ đề

Xem tất cả