Câu hỏi:
29/12/2023 106
Cho tam giác ABC có tọa độ đỉnh B(4; –3). Đường trung tuyến AM có phương trình \(\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 - 7t\end{array} \right.\). Đường cao AH có phương trình 2x + 5y + 66 = 0. Viết phương trình đường trung trực của cạnh AB.
Cho tam giác ABC có tọa độ đỉnh B(4; –3). Đường trung tuyến AM có phương trình \(\left\{ \begin{array}{l}x = 1 + 3t\\y = - 2 - 7t\end{array} \right.\). Đường cao AH có phương trình 2x + 5y + 66 = 0. Viết phương trình đường trung trực của cạnh AB.
Trả lời:
Ta có A ∈ AM.
Suy ra tọa độ A(1 + 3t; –2 – 7t).
Lại có A ∈ AH.
Suy ra 2(1 + 3t) + 5(–2 – 7t) + 66 = 0.
Do đó –29t + 58 = 0.
Vì vậy –29t = –58.
Khi đó t = 2.
Suy ra tọa độ A(7; –16).
Gọi I là trung điểm của cạnh AB.
Suy ra \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{7 + 4}}{2} = \frac{{11}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 16 - 3}}{2} = - \frac{{19}}{2}\end{array} \right.\).
Khi đó tọa độ \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\).
Ta có \(\overrightarrow {AB} = \left( { - 3;13} \right)\).
Đường trung trực d của cạnh AB đi qua điểm \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\) và có vectơ pháp tuyến \(\overrightarrow {AB} = \left( { - 3;13} \right)\).
Suy ra phương trình d: \( - 3\left( {x - \frac{{11}}{2}} \right) + 13\left( {y + \frac{{19}}{2}} \right) = 0\) ⇔ 3x – 13y – 140 = 0.
Ta có A ∈ AM.
Suy ra tọa độ A(1 + 3t; –2 – 7t).
Lại có A ∈ AH.
Suy ra 2(1 + 3t) + 5(–2 – 7t) + 66 = 0.
Do đó –29t + 58 = 0.
Vì vậy –29t = –58.
Khi đó t = 2.
Suy ra tọa độ A(7; –16).
Gọi I là trung điểm của cạnh AB.
Suy ra \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_A} + {x_B}}}{2} = \frac{{7 + 4}}{2} = \frac{{11}}{2}\\{y_I} = \frac{{{y_A} + {y_B}}}{2} = \frac{{ - 16 - 3}}{2} = - \frac{{19}}{2}\end{array} \right.\).
Khi đó tọa độ \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\).
Ta có \(\overrightarrow {AB} = \left( { - 3;13} \right)\).
Đường trung trực d của cạnh AB đi qua điểm \(I\left( {\frac{{11}}{2}; - \frac{{19}}{2}} \right)\) và có vectơ pháp tuyến \(\overrightarrow {AB} = \left( { - 3;13} \right)\).
Suy ra phương trình d: \( - 3\left( {x - \frac{{11}}{2}} \right) + 13\left( {y + \frac{{19}}{2}} \right) = 0\) ⇔ 3x – 13y – 140 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường thẳng d có phương trình tham số \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right.\). Phương trình tổng quát của đường thẳng d là
Cho đường thẳng d có phương trình tham số \(\left\{ \begin{array}{l}x = 5 + t\\y = - 9 - 2t\end{array} \right.\). Phương trình tổng quát của đường thẳng d là
Câu 2:
Khoảng cách từ điểm A(1; 1) đến đường thẳng d: 5x – 12y – 6 = 0 là
Khoảng cách từ điểm A(1; 1) đến đường thẳng d: 5x – 12y – 6 = 0 là
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho A(1; 1) và B(5; – 2). Độ dài đoạn thẳng AB là
Trong mặt phẳng tọa độ Oxy, cho A(1; 1) và B(5; – 2). Độ dài đoạn thẳng AB là
Câu 4:
Ở căn hộ chung cư nhà An người ta thường dùng các chữ số từ 0 đến 9 để thiết lập mật khẩu. Nhà An muốn thiết lập một mật khẩu gồm 4 chữ số khác nhau. Số cách thiết lập mật khẩu cho nhà An là
Ở căn hộ chung cư nhà An người ta thường dùng các chữ số từ 0 đến 9 để thiết lập mật khẩu. Nhà An muốn thiết lập một mật khẩu gồm 4 chữ số khác nhau. Số cách thiết lập mật khẩu cho nhà An là
Câu 5:
Thực hiện phép tính: \({\left( {\sqrt 7 + \sqrt 5 } \right)^5} - {\left( {\sqrt 7 - \sqrt 5 } \right)^5}\).
Thực hiện phép tính: \({\left( {\sqrt 7 + \sqrt 5 } \right)^5} - {\left( {\sqrt 7 - \sqrt 5 } \right)^5}\).
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho hai vectơ \(\overrightarrow a = \left( {2;\,\, - 1} \right)\) và \(\overrightarrow b = \left( {3;\,\,4} \right)\). Tọa độ của vectơ \(\overrightarrow c = \overrightarrow a + 3\overrightarrow b \) là
Trong mặt phẳng tọa độ Oxy, cho hai vectơ \(\overrightarrow a = \left( {2;\,\, - 1} \right)\) và \(\overrightarrow b = \left( {3;\,\,4} \right)\). Tọa độ của vectơ \(\overrightarrow c = \overrightarrow a + 3\overrightarrow b \) là
Câu 7:
Trong buổi lễ kỉ niệm ngày thành lập Đoàn Thanh niên cộng sản Hồ Chí Minh 26 – 3, bí thư Đoàn trường cần chọn 3 tiết mục từ 7 tiết mục hát và 3 tiết mục từ 6 tiết mục múa rồi xếp thứ tự biểu diễn. Hỏi có bao nhiêu cách chọn và xếp thứ tự sao cho các tiết mục hát và múa xen kẽ nhau?
Trong buổi lễ kỉ niệm ngày thành lập Đoàn Thanh niên cộng sản Hồ Chí Minh 26 – 3, bí thư Đoàn trường cần chọn 3 tiết mục từ 7 tiết mục hát và 3 tiết mục từ 6 tiết mục múa rồi xếp thứ tự biểu diễn. Hỏi có bao nhiêu cách chọn và xếp thứ tự sao cho các tiết mục hát và múa xen kẽ nhau?
Câu 8:
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = \left( { - 5;\,\,3} \right),\,\,\overrightarrow v = \left( {2x + y;\,x - y} \right)\). Hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) bằng nhau nếu
Trong mặt phẳng tọa độ Oxy, cho \(\overrightarrow u = \left( { - 5;\,\,3} \right),\,\,\overrightarrow v = \left( {2x + y;\,x - y} \right)\). Hai vectơ \(\overrightarrow u \) và \(\overrightarrow v \) bằng nhau nếu
Câu 9:
Cho 8 điểm phân biệt nằm trong mặt phẳng. Hỏi có bao nhiêu đoạn thẳng có hai đầu mút là 2 trong 8 điểm đó?
Cho 8 điểm phân biệt nằm trong mặt phẳng. Hỏi có bao nhiêu đoạn thẳng có hai đầu mút là 2 trong 8 điểm đó?
Câu 10:
Các thành phố A; B; C; D được nối với nhau bởi các con đường như hình vẽ sau:
Có bao nhiêu cách đi từ A đến D mà qua B và C chỉ một lần?
Các thành phố A; B; C; D được nối với nhau bởi các con đường như hình vẽ sau:
Có bao nhiêu cách đi từ A đến D mà qua B và C chỉ một lần?
Câu 11:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 3 = 0. Vectơ pháp tuyến của đường thẳng d là
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x – y + 3 = 0. Vectơ pháp tuyến của đường thẳng d là
Câu 12:
Nếu một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu hành động thứ nhất có a cách thực hiện, ứng với mỗi cách thực hiện hành động thứ nhất, có b cách thực hiện hành động thứ hai thì số cách hoàn thành công việc đó là
Nếu một công việc được hoàn thành bởi hai hành động liên tiếp. Nếu hành động thứ nhất có a cách thực hiện, ứng với mỗi cách thực hiện hành động thứ nhất, có b cách thực hiện hành động thứ hai thì số cách hoàn thành công việc đó là
Câu 13:
Nếu một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động thứ nhất có a cách thực hiện, hành động thứ hai có b cách thực hiện (các cách thực hiện của hai hành động là khác nhau đôi một) thì số cách hoàn thành công việc đó là
Nếu một công việc được hoàn thành bởi một trong hai hành động. Nếu hành động thứ nhất có a cách thực hiện, hành động thứ hai có b cách thực hiện (các cách thực hiện của hai hành động là khác nhau đôi một) thì số cách hoàn thành công việc đó là
Câu 15:
Cho hình dưới đây.
Tọa độ của vectơ \(\overrightarrow a \) trong hình vẽ trên là
Cho hình dưới đây.
Tọa độ của vectơ \(\overrightarrow a \) trong hình vẽ trên là