Câu hỏi:
01/02/2024 50Cho tam giác ABC có \(\widehat B = 50^\circ ,\widehat C = 30^\circ \). Vẽ đường cao AH, phân giác AE. Trên cạnh AC lấy D sao cho \(\widehat {CB{\rm{D}}} = 10^\circ \). Gọi I là giao điểm của AE và BD. Số đo góc AID là:
A. 60°;
B. 70°;
C. 80°;
D. 90°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Xét DBCD có \(\widehat {BCD} + \widehat {BDC} + \widehat {CBD} = 180^\circ \) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {BDC} = 180^\circ - \widehat {BCD} - \widehat {CBD} = 180^\circ - 30^\circ - 10^\circ = 140^\circ \).
Ta có \(\widehat {ADB} + \widehat {BDC} = 180^\circ \)(hai góc kề bù)
Nên \(\widehat {ADB} = 180^\circ - \widehat {BDC} = 180^\circ - 140^\circ = 40^\circ \).
Ta có \(\widehat {AB{\rm{D}}} + \widehat {DBC} = \widehat {ABC}\) (hai góc kề nhau)
Suy ra \(\widehat {AB{\rm{D}}} = \widehat {ABC} - \widehat {DBC} = 50^\circ - 10^\circ = 40^\circ \).
Xét DABD có \(\widehat {AB{\rm{D}}} = \widehat {ADB}( = 40^\circ )\) nên tam giác ABD cân tại A.
Mà AI là tia phân giác của góc BAD nên đồng thời là đường cao.
Hay AI ⊥ BD
Do đó \(\widehat {AI{\rm{D}}} = 90^\circ \)
Vậy ta chọn phương án D.
Hướng dẫn giải
Đáp án đúng là: D
Xét DBCD có \(\widehat {BCD} + \widehat {BDC} + \widehat {CBD} = 180^\circ \) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {BDC} = 180^\circ - \widehat {BCD} - \widehat {CBD} = 180^\circ - 30^\circ - 10^\circ = 140^\circ \).
Ta có \(\widehat {ADB} + \widehat {BDC} = 180^\circ \)(hai góc kề bù)
Nên \(\widehat {ADB} = 180^\circ - \widehat {BDC} = 180^\circ - 140^\circ = 40^\circ \).
Ta có \(\widehat {AB{\rm{D}}} + \widehat {DBC} = \widehat {ABC}\) (hai góc kề nhau)
Suy ra \(\widehat {AB{\rm{D}}} = \widehat {ABC} - \widehat {DBC} = 50^\circ - 10^\circ = 40^\circ \).
Xét DABD có \(\widehat {AB{\rm{D}}} = \widehat {ADB}( = 40^\circ )\) nên tam giác ABD cân tại A.
Mà AI là tia phân giác của góc BAD nên đồng thời là đường cao.
Hay AI ⊥ BD
Do đó \(\widehat {AI{\rm{D}}} = 90^\circ \)
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC vuông tại A. Trên cạnh AC lấy điểm M bất kì (M ≠ A, C). Qua M kẻ đường thẳng vuông góc với BC tại N. Từ C kẻ đường thẳng vuông góc với BM tại P. Gọi D là giao điểm của AB và CP. Khẳng định nào sau đây sai?
Câu 2:
Cho tam giác ABC vuông tại A, trên tia BA lấy M sao cho BM = BC. Tia phân giác góc B cắt AC tại H. Khẳng định nào sau đây là sai?
Câu 3:
Cho tam giác IHK đều có G là trọng tâm. Khẳng định nào sau đây là đúng?
Câu 4:
Cho tam giác ABC nhọn có đường cao AI. Trên AI lấy E sao cho \(\widehat {BAI} = \widehat {BCE}.\) Gọi F là giao điểm của AB và CE, H là giao điểm của BE và AC. Khẳng định nào sau đây là sai?
Câu 5:
Cho tam giác XYZ nhọn, đường cao XA. Lấy B thuộc đoạn AZ, vẽ BC vuông góc XZ. Giao điểm của XA và BC là I. Khẳng định nào sau đây là đúng?
Câu 6:
Cho tam giác MNP có \(\widehat M = 63^\circ ,\widehat N = 48^\circ \). Vẽ trực tâm O của tam giác MNP. Số đo góc MON là: