Câu hỏi:
01/02/2024 121Cho tam giác ABC có các đường phân giác cắt nhau tại I. Biết \(\widehat {BIC} = 126^\circ .\) Khi đó \(\widehat {BAI}\) bằng:
A. 32°;
B. 36°;
C. 63°;
C. 63°;
D. 64°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Trong DBIC có \(\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = {180^o}\) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {IBC} + \widehat {ICB} = 180^\circ - \widehat {BIC} = 180^\circ - 126^\circ = 54^\circ \).
Do BI là tia phân giác của góc ABC nên \(\widehat {IBC} = \frac{1}{2}\widehat {ABC}\);
Do CI là tia phân giác của góc ACB nên \(\widehat {ICB} = \frac{1}{2}\widehat {ACB}\).
Do đó \(\widehat {IBC} + \widehat {ICB} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB} = \frac{1}{2}\left( {\widehat {ABC} + \widehat {ACB}} \right)\).
Suy ra \(\widehat {ABC} + \widehat {ACB} = 2.\left( {\widehat {IBC} + \widehat {ICB}} \right) = 2.54^\circ = 108^\circ \).
Trong DABC có \(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ - 108^\circ = 72^\circ \).
Do AI là tia phân giác của góc BAC nên \(\widehat {BAI} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}.72^\circ = 36^\circ .\)
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
Trong DBIC có \(\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = {180^o}\) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {IBC} + \widehat {ICB} = 180^\circ - \widehat {BIC} = 180^\circ - 126^\circ = 54^\circ \).
Do BI là tia phân giác của góc ABC nên \(\widehat {IBC} = \frac{1}{2}\widehat {ABC}\);
Do CI là tia phân giác của góc ACB nên \(\widehat {ICB} = \frac{1}{2}\widehat {ACB}\).
Do đó \(\widehat {IBC} + \widehat {ICB} = \frac{1}{2}\widehat {ABC} + \frac{1}{2}\widehat {ACB} = \frac{1}{2}\left( {\widehat {ABC} + \widehat {ACB}} \right)\).
Suy ra \(\widehat {ABC} + \widehat {ACB} = 2.\left( {\widehat {IBC} + \widehat {ICB}} \right) = 2.54^\circ = 108^\circ \).
Trong DABC có \(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\) (tổng ba góc trong một tam giác)
Suy ra \(\widehat {BAC} = 180^\circ - \left( {\widehat {ABC} + \widehat {ACB}} \right) = 180^\circ - 108^\circ = 72^\circ \).
Do AI là tia phân giác của góc BAC nên \(\widehat {BAI} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}.72^\circ = 36^\circ .\)
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có các tia phân giác cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB lại E, cắt AC tại F. Biết BE = 1 cm, CF = 2 cm. Độ dài đoạn EF là:
Câu 2:
Cho tam giác AOM có \(\widehat A = 52^\circ \). Ba đường phân giác cắt nhau tại I. Số đo góc MIO là:
Câu 3:
Cho tam giác DEG có \(\widehat G = \widehat D + \widehat E\). Hai tia phân giác DA, EB cắt nhau tại H. Số đo góc AHB là:
Câu 4:
Cho ΔABC cân tại A. Gọi G là trọng tâm của tam giác, I là giao điểm của các đường phân giác trong tam giác. Khẳng định nào đúng?
Câu 5:
Cho tam giác ABC có AH ⊥ BC và \(\widehat {BAH} = 2\widehat {BCA}\). Tia phân giác của góc B cắt AC tại E, tia phân giác của góc BAH cắt BE ở I. Số đo góc BEC là
Câu 6:
Cho tam giác DEG có \(\widehat G = \frac{1}{3}\widehat D = \frac{1}{5}\widehat E\). Vẽ các đường phân giác DM, EN. Số đo góc GMD là: