Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.

Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân.

Trả lời
Cho tam giác ABC cân tại A. Trên tia đối của tia AB lấy điểm M, trên tia đối của tia AC lấy điểm N sao cho AM = AN. Chứng minh tứ giác MNBC là hình thang cân. (ảnh 1)

Xét ∆AMN có AM = AN (giả thiết).

Do đó ∆AMN cân tại A, suy ra M1^=180°A2^2.

Vì ∆ABC cân tại A nên B1^=180°A1^2.

Lại có A1^=A2^ (hai góc đối đỉnh) nên B1^=M1^.

Mà hai góc này ở vị trí so le trong nên MN // BC.

Vậy tứ giác MNBC là hình thang.  (1)

Mặt khác, AB = AC; AM = AN.

Suy ra AB + AM = AC + AN, do đó MB = NC  (2)

Từ (1) và (2) suy ra MNBC là hình thang cân.