Câu hỏi:
02/02/2024 67
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE ⊥ AM (E ∈ AM), CF ⊥ AN (F ∈ AN).
Chứng minh rằng ∆BME = ∆CNF.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE ⊥ AM (E ∈ AM), CF ⊥ AN (F ∈ AN).
Chứng minh rằng ∆BME = ∆CNF.
Trả lời:
Vì ∆ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\) suy ra \[\widehat {ABM} = \widehat {ACN}\].
Xét ∆ABM và ∆CAN có:
AB = AC (vì ∆ABC cân tại A)
\[\widehat {ABM} = \widehat {ACN}\] (chứng minh trên)
BM = CN (giả thiết)
Do đó ∆ABM = ∆CAN (c.g.c).
Suy ra BM = CN (hai cạnh tương ứng); \(\widehat {AMB} = \widehat {ANC}\) (hai góc tương ứng).
Xét ∆BME và ∆CNF có:
\[\widehat {BEM} = \widehat {CFN} = 90^\circ \]
BM = CN (chứng minh trên)
\(\widehat {AMB} = \widehat {ANC}\) (chứng minh trên)
Do đó ∆BME = ∆CNF (cạnh huyền – góc nhọn).
Vì ∆ABC cân tại A nên \(\widehat {ABC} = \widehat {ACB}\) suy ra \[\widehat {ABM} = \widehat {ACN}\].
Xét ∆ABM và ∆CAN có:
AB = AC (vì ∆ABC cân tại A)
\[\widehat {ABM} = \widehat {ACN}\] (chứng minh trên)
BM = CN (giả thiết)
Do đó ∆ABM = ∆CAN (c.g.c).
Suy ra BM = CN (hai cạnh tương ứng); \(\widehat {AMB} = \widehat {ANC}\) (hai góc tương ứng).
Xét ∆BME và ∆CNF có:
\[\widehat {BEM} = \widehat {CFN} = 90^\circ \]
BM = CN (chứng minh trên)
\(\widehat {AMB} = \widehat {ANC}\) (chứng minh trên)
Do đó ∆BME = ∆CNF (cạnh huyền – góc nhọn).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm số hữu tỉ x trong tỉ lệ thức sau:
\(\frac{{9x - 1}}{9} = \frac{5}{3}\);
Tìm số hữu tỉ x trong tỉ lệ thức sau:
\(\frac{{9x - 1}}{9} = \frac{5}{3}\);
Câu 5:
Cho tam giác MNP có: MN < MP, MD ⊥ NP. Khẳng định nào sau đây là đúng
Câu 7:
Tìm số hữu tỉ x trong tỉ lệ thức sau:
\(\frac{{x + 11}}{{14 - x}} = \frac{2}{3}\).
Tìm số hữu tỉ x trong tỉ lệ thức sau:
\(\frac{{x + 11}}{{14 - x}} = \frac{2}{3}\).
Câu 9:
Một ô tô đi từ A lúc 8 giờ. Đến 9 giờ một ô tô khác cũng đi xe từ A. Xe thứ nhất đến B lúc 2 giờ chiều. Xe thứ hai đến B sớm hơn xe thứ nhất nửa giờ. Tính vận tốc mỗi xe biết rằng vận tốc xe thứ hai lớn hơn vận tốc xe thứ nhất là 20 km/h.
Một ô tô đi từ A lúc 8 giờ. Đến 9 giờ một ô tô khác cũng đi xe từ A. Xe thứ nhất đến B lúc 2 giờ chiều. Xe thứ hai đến B sớm hơn xe thứ nhất nửa giờ. Tính vận tốc mỗi xe biết rằng vận tốc xe thứ hai lớn hơn vận tốc xe thứ nhất là 20 km/h.
Câu 10:
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE ⊥ AM (E ∈ AM), CF ⊥ AN (F ∈ AN).
EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác của góc MAN
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE ⊥ AM (E ∈ AM), CF ⊥ AN (F ∈ AN).
EB và FC kéo dài cắt nhau tại O. Chứng minh AO là tia phân giác của góc MAN
Câu 11:
Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng
Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng
Câu 12:
Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\). Chứng minh rằng \(\frac{{a - 2b}}{b} = \frac{{c - 2d}}{d}\).
Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\). Chứng minh rằng \(\frac{{a - 2b}}{b} = \frac{{c - 2d}}{d}\).
Câu 13:
Cho \(\frac{a}{2} = \frac{b}{3};\,\,\frac{b}{5} = \frac{c}{4}\). Tìm a, b, c biết a + b + c = –74.
Cho \(\frac{a}{2} = \frac{b}{3};\,\,\frac{b}{5} = \frac{c}{4}\). Tìm a, b, c biết a + b + c = –74.
Câu 14:
Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?
Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?
Câu 15:
ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE ⊥ AM (E ∈ AM), CF ⊥ AN (F ∈ AN).
Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng.
ABC cân tại A. Trên tia đối của tia BC lấy điểm M, trên tia đối tia của tia CB lấy điểm N sao cho BM = CN. Kẻ BE ⊥ AM (E ∈ AM), CF ⊥ AN (F ∈ AN).
Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau ở H. Chứng minh ba điểm A, O, H thẳng hàng.