Cho số phức z thỏa mãn |z| = 4. Biết tập hợp biểu diễn các số phức w = (3 + 4i)z
Cho số phức z thỏa mãn |z| = 4. Biết tập hợp biểu diễn các số phức w = (3 + 4i)z + i là một đường tròn. Tìm bán kính R của đường tròn đó.
Cho số phức z thỏa mãn |z| = 4. Biết tập hợp biểu diễn các số phức w = (3 + 4i)z + i là một đường tròn. Tìm bán kính R của đường tròn đó.
Giả sử w = a + bi. Ta có
w = (3 + 4i)z + i
Û a + bi = (3 + 4i)z + i
Û a + (b − 1)i = (3 + 4i)z
Theo giả thiết cho |z| = 4 nên ta có:
Û (3a + 4b − 4)2 + (−4a + 3b − 3)2 = 1002
Û 25a2 + 25b2 + 25 − 50b = 1002
Û a2 + b2 − 2b + 1 = 202
Û a2 + (b − 1)2 = 202
Tập hợp các điểm trong mặt phẳng tọa độ Oxy biểu diễn số phức w là một đường tròn có bán kính bằng 20.