Cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx - 2m + 3

Cho parabol (P): y = x2 và đường thẳng (d): y = 2mx – 2m + 3

a. Khi m = \(\frac{1}{2}\). Xác định tọa độ giao điểm của (d) và (P)

b. Gọi A(x1,y1) và B(x2,y2) là các giao điểm của (d) và (P). Tìm các giá trị của m để y1 + y2 < 9

Trả lời

a) Xét phương trình hoành độ giao điểm:

x2 = 2mx – 2m + 3

x2 – 2mx + 2m – 3 = 0

Thay m = \(\frac{1}{2}\) ta được:

x2 – x – 2 = 0

\(\left[ \begin{array}{l}x = 2\\x = - 1\end{array} \right.\)\(\left[ \begin{array}{l}y = 4\\y = 1\end{array} \right.\)

Vậy giao điểm của (d) và (P) là (2;4) và (–1;1)

b) x2 – 2mx + 2m – 3 = 0 (*)

∆' = m2 –2m + 3 = (m – 1)2 + 2 > 0 với mọi m

Suy ra: Phương trình (*) luôn có 2 nghiệm phân biệt

Theo hệ thức Vi – ét ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = 2m\\{x_1}.{x_2} = 2m - 3\end{array} \right.\)

\(\left\{ \begin{array}{l}{y_1} = {x_1}^2\\{y_2} = {x_2}^2\end{array} \right.\)

Lại có: y1 + y2 < 9

x12 +x22 < 9

(x1 + x2)2 – 2x1x2 < 9

(2m)2 – 2(2m– 3) < 9

4m2 – 4m + 6 < 9

4m2 – 4m + 1 < 4

(2m – 1)2 < 4

–2 < 2m – 1 < 2

\(\frac{{ - 1}}{2} < m < \frac{3}{2}\)

Vậy \(\frac{{ - 1}}{2} < m < \frac{3}{2}\)

Câu hỏi cùng chủ đề

Xem tất cả