Cho P = (1 / căn bậc hai x + căn bậc hai x / (căn bậc hai x + 1) : căn bậc hai x
11
16/09/2024
Cho \(P = \left( {\frac{1}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\frac{{\sqrt x }}{{x + \sqrt x }}\).
a) Rút gọn P.
b) Tìm giá trị của P khi x = 4.
c) Tìm x để \(P = \frac{{13}}{3}\).
Trả lời
a) Điều kiện: x > 0
\(P = \left( {\frac{1}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\frac{{\sqrt x }}{{x + \sqrt x }}\)
\(P = \left( {\frac{{\sqrt x + 1 + x}}{{\sqrt x \left( {\sqrt x + 1} \right)}}} \right):\frac{{\sqrt x }}{{\sqrt x \left( {\sqrt x + 1} \right)}}\)
\(P = \frac{{\sqrt x + 1 + x}}{{\sqrt x \left( {\sqrt x + 1} \right)}}.\frac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x }}\)
\(P = \frac{{\sqrt x + 1 + x}}{{\sqrt x }}\)
b) Thay x = 4 vào ta có: \(P = \frac{{\sqrt 4 + 1 + 4}}{{\sqrt 4 }} = \frac{{2 + 1 + 4}}{2} = \frac{7}{2}\)
c) Khi \(P = \frac{{13}}{3}\) thì \(\frac{{13}}{3} = \frac{{\sqrt x + 1 + x}}{{\sqrt x }}\)
⇔ \(3x + 3\sqrt x + 3 = 13\sqrt x \)
⇔ \(3x - 10\sqrt x + 3 = 0\)
⇔ \(3x - 9\sqrt x - \sqrt x + 3 = 0\)
⇔ \(\sqrt x \left( {3\sqrt x - 1} \right) - 3\left( {3\sqrt x - 1} \right) = 0\)
⇔ \(\left( {\sqrt x - 3} \right)\left( {3\sqrt x - 1} \right) = 0\)
⇔ \(\left[ \begin{array}{l}\sqrt x - 3 = 0\\3\sqrt x - 1 = 0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x = 9\\x = \frac{1}{9}\end{array} \right.\).