a) Xét ΔAOE và ΔMOE có:
AO = MO = R
AE = ME (gt)
OE chung
⇒ ΔAOE = ΔMOE (c.c.c)
⇒ \(\widehat {EAO} = \widehat {EMO}\)
⇒ \(\widehat {EAO} = \widehat {EMO} = 90^\circ \)
⇒ EF là tiếp tuyến của (O) (đpcm)
b) EF và By cắt nhau tại F, theo tính chất của 2 tiếp tuyến cắt nhau, ta có:
\(\widehat {MOF} = \widehat {BOF}\)
Mà \(\widehat {MOE} = \widehat {AOE}\) (ΔAOE = ΔMOE)
⇒ \(\widehat {MOE} + \widehat {MOF} = \widehat {AOE} + \widehat {BOF} = \frac{1}{2}.180^\circ = 90^\circ \)
⇒ \(\widehat {EOF} = 90^\circ \) ⇒ ΔEOF là tam giác vuông (đpcm)
c) EF và Ax là 2 tiếp tuyến cắt nhau tại E
⇒ EA = EM mà OA = OM
⇒ OE là trung trực của AM ⇒ OE ⊥ AM (1)
ΔAMB nội tiếp đường tròn đường kính AB ⇒ ΔAMB vuông tại M
⇒ MA ⊥ MB (2)
Từ (1), (2) suy ra OE // MB
⇒ \(\widehat {MOE} = \widehat {OMB}\)(so le trong)
Mà \(\widehat {ABM} = \widehat {OMB}\)(ΔMOB cân tại O)
⇒ \(\widehat {ABM} = \widehat {MOE}\)
Lại có \(\widehat {AMB} = \widehat {EMO} = 90^\circ \)
⇒ ΔEMO đồng dạng với ΔAMB (g.g)
⇒ \(\frac{{EM}}{{OE}} = \frac{{AM}}{{AB}}\) ⇒ EM.AB = AM.OE (3)
Chứng minh tương tự, ta có ΔFMO đồng dạng với ΔBMA (g.g)
⇒ \(\frac{{FM}}{{FO}} = \frac{{BM}}{{AB}}\) ⇒ FM.AB = BM.OF (4)
Từ (3) và (4) suy ra: AM.OE + BM.OF = AB.(EM + FM) = AB.EF (đpcm).