Cho n là một số nguyên dương bất kỳ và Tn = 15 + 25 + 35 + ... + n5 , An = 1 + 2 + 3 + ... + n.
Cho n là một số nguyên dương bất kỳ và Tn = 15 + 25 + 35 + ... + n5 , An = 1 + 2 + 3 + ... + n. Chứng minh: Tn chia hết An.
Cho n là một số nguyên dương bất kỳ và Tn = 15 + 25 + 35 + ... + n5 , An = 1 + 2 + 3 + ... + n. Chứng minh: Tn chia hết An.
Ta có tính chất an + bn ⋮ a+b
Và An = ⇒ 2An = n(n+1)
Nên ta có:
2Tn = 2 (15 + 25 + 35 + ... + n5)
= (15 + n5) + [25 + (n – 1)5] + … + [25 + (n – 2)5]+ …
Áp dụng tính chất ta có: 15 + n5 ⋮ (n+1)
[25 + (n−1)5] ⋮ (n+1)
[35 + (n−2)5] ⋮ (n+1)
...
Nên Tn = (15 + n5) + [25 + (n − 1)5] + [35 + (n−2)5] +... ⋮ (n + 1)
Hay 2Tn ⋮ (n+1)
[15+(n−1)5] ⋮ (1 + n – 1 = n)
(25+(n−2)5] ⋮ n
[3+(n−3)]5 ⋮ n
....
Nên 2Tn = [15 + (n−1)5] + (25 + (n−2)5] + [3 + (n−3)]5 + ... + n ⋮ n
Hay 2Tn ⋮ n
Ta có: 2Tn ⋮ n; Tn ⋮ n(n + 1)
Mà (n; n+1) = 1 nên 2Tn ⋮ n.(n+1)
Hay 2Tn ⋮ 2An
⇒ Tn chia hết An.