Câu hỏi:
01/04/2024 43Cho một số hữu tỷ được viết dưới dạng phân số tối giản rồi tính tích của tử số và mẫu số. Hỏi có bao nhiêu số hữu tỷ nằm giữa 0 và 1 mà kết quả của phép nhân trên là 20!
A: 64
B: 128
C: 256
D: 192
Trả lời:
Vì mỗi số hữu tỷ được viết dưới dạng phân số tối giản nên tử số và mẫu số không có ước nguyên tố chung nào.
Có 8 ước nguyên tố của 20! Là 2;3;5;7;11;13;17;19.
Mỗi một số nguyên tố này chỉ được chọn hoặc thuộc tử số hoặc mẫu số. Có tất cả 28 = 256 cách như vậy.
Tuy nhiên không phải tất cả 256 phân số này đều nhỏ hơn 1. Thật vậy; với mỗi phân số ta ghép cặp với phân số nghịch đảo của nó; có 128 cặp như thế; mà chỉ có 1 trong hai phân số đó nhỏ hơn 1.
Như vậy có tất cả 128 phân số thỏa mãn đầu bài.
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?
Câu 2:
Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và 1.
Câu 3:
Có bao nhiêu số gồm 7 chữ số đôi một khác nhau được lập bằng cách dùng 7 chữ số 1;2;3;4;5;7;9 sao cho hai chữ số chẵn không liền nhau?
Câu 4:
Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
Câu 5:
Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:
Câu 6:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Câu 7:
Cho X={1;2;3;4;5;6;7;8;9}. Từ X lập được bao nhiêu số sao cho Có 3 chữ số khác nhau và trong đó phải có chữ số 1
Câu 8:
Có bao nhiêu số tự nhiên trong đó các chữ số khác nhau ; nhỏ hơn 10000 được tạo thành từ năm chữ số: 0;2;5;7;8?
Câu 9:
Cho tập hợp A={ 1;2;3;4;5;6;7;8}. Có bao nhiêu tập hợp con X của tập A thỏa mãn điều kiện chứa 1 và không chứa 2?
Câu 10:
Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng: các hệ số tùy ý.
Câu 11:
Cho X={1;2;3;4;5;6;7;8;9}. Từ X lập được bao nhiêu số sao cho Có 3 chữ số khác nhau và nhỏ hơn 496
Câu 12:
Có 4 cuốn sách toán khác nhau, 3 sách lý khác nhau, 2 sách hóa khác nhau. Muốn sắp vào một kệ dài các cuốn sách cùng môn kề nhau, 2 loại toán và lý phải kề nhau thì số cách sắp là:
Câu 13:
Có 8 bạn nam và 2 bạn nữ. Hỏi có bao nhiêu cách sắp xếp các bạn trên thành một hàng ngang sao cho hai bạn nữ đứng cách nhau đúng hai bạn nam?
Câu 14:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 15:
Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt màu vàng