Câu hỏi:
01/04/2024 66Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?
A: 40
B. 45
C.50
D. 55
Trả lời:
Nếu chữ số hàng chục là 9 thì có 9 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.9=9 số.
Nếu chữ số hàng chục là 8 thì có 8 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.8=8 số.
Nếu chữ số hàng chục là 7 thì có 7 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài.Theo quy tắc nhân có 1.7=7 số.
................................
... Nếu chữ số hàng chục là 1 thì có 1 cách chọn chữ số hàng đơn vị thỏa mãn đầu bài(là 0).Theo quy tắc nhân có 1.1=1 số.
Vậy số các số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị là: 1+2+3+..+7+8+9=45
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?
Câu 2:
Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và 1.
Câu 3:
Có bao nhiêu số gồm 7 chữ số đôi một khác nhau được lập bằng cách dùng 7 chữ số 1;2;3;4;5;7;9 sao cho hai chữ số chẵn không liền nhau?
Câu 4:
Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:
Câu 5:
Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?
Câu 6:
Có bao nhiêu số tự nhiên trong đó các chữ số khác nhau ; nhỏ hơn 10000 được tạo thành từ năm chữ số: 0;2;5;7;8?
Câu 7:
Cho X={1;2;3;4;5;6;7;8;9}. Từ X lập được bao nhiêu số sao cho Có 3 chữ số khác nhau và trong đó phải có chữ số 1
Câu 8:
Cho tập hợp A={ 1;2;3;4;5;6;7;8}. Có bao nhiêu tập hợp con X của tập A thỏa mãn điều kiện chứa 1 và không chứa 2?
Câu 9:
Hỏi có bao nhiêu đa thức bậc ba P(x) =ax3+bx2+cx+d mà các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng: các hệ số tùy ý.
Câu 10:
Có 4 cuốn sách toán khác nhau, 3 sách lý khác nhau, 2 sách hóa khác nhau. Muốn sắp vào một kệ dài các cuốn sách cùng môn kề nhau, 2 loại toán và lý phải kề nhau thì số cách sắp là:
Câu 11:
Có 8 bạn nam và 2 bạn nữ. Hỏi có bao nhiêu cách sắp xếp các bạn trên thành một hàng ngang sao cho hai bạn nữ đứng cách nhau đúng hai bạn nam?
Câu 12:
Cho X={1;2;3;4;5;6;7;8;9}. Từ X lập được bao nhiêu số sao cho Có 3 chữ số khác nhau và nhỏ hơn 496
Câu 13:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 14:
Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt màu vàng