Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm (O ). Gọi (X )
14
28/08/2024
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm (O ). Gọi (X ) là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất (P) để chọn được một tam giác từ tập (X) là tam giác cân nhưng không phải tam giác đều.
Trả lời
Số phần tử của không gian mẫu: n(Ω) = n(X) = \(C_{18}^3\)
Gọi A là biến cố “chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều”
Chọn 1 đỉnh bất kì làm đỉnh của tam giác cân, ta lập được 8 tam giác cân + đều.
Có 18 đỉnh như vậy nên lập được 8 . 18 = 144 (tam giác cân + đều)
Ta lại có số tam giác đều có đỉnh là các đỉnh của đa giác đều 18 đỉnh là 6.
Suy ra: n(A) = 144 – 6 = 138.
Vậy xác suất của biến cố A là: P = P(A) = \(\frac{{136}}{{C_{18}^3}} = \frac{{23}}{{136}}\).