Câu hỏi:
01/02/2024 62Cho ∆MNP cân tại M có \[\widehat {\rm{N}} = 50^\circ \] và MO là đường trung trực của NP (O ∈ NP). Số đo của \(\widehat {{\rm{OMP}}}\) là
A. 40°;
B. 50°;
C. 56°;
D. 58°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Do ∆MNP cân tại M nên \(\widehat {\rm{P}} = \widehat {\rm{N}} = 50^\circ \) (tính chất tam giác cân).
Vì MO là đường trung trực của NP nên MO ⊥ NP tại O.
Do đó ∆MOP vuông tại O.
Nên \(\widehat {{\rm{OMP}}} + \widehat {\rm{P}} = 90^\circ \)(tổng hai góc nhọn của tam giác vuông bằng 90°).
Hay \(\widehat {{\rm{OMP}}} + 50^\circ = 90^\circ \)
Suy ra \(\widehat {{\rm{OMP}}} = 90^\circ - 50^\circ = 40^\circ \).
Vậy ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Do ∆MNP cân tại M nên \(\widehat {\rm{P}} = \widehat {\rm{N}} = 50^\circ \) (tính chất tam giác cân).
Vì MO là đường trung trực của NP nên MO ⊥ NP tại O.
Do đó ∆MOP vuông tại O.
Nên \(\widehat {{\rm{OMP}}} + \widehat {\rm{P}} = 90^\circ \)(tổng hai góc nhọn của tam giác vuông bằng 90°).
Hay \(\widehat {{\rm{OMP}}} + 50^\circ = 90^\circ \)
Suy ra \(\widehat {{\rm{OMP}}} = 90^\circ - 50^\circ = 40^\circ \).
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho \(\widehat {{\rm{xOy}}} = 30^\circ \). Trên tia Ox lấy điểm E, trên tia Oy lấy điểm F. Lấy điểm D sao cho OF là đường trung trực của ED. Chọn khẳng định đúng:
Câu 2:
Cho hình dưới đây:
Biết điểm M là điểm bất kì nằm trên đường thẳng a. Khẳng định đúng là:
Câu 3:
Cho đoạn thẳng AB = 5 cm. Vẽ đường tròn tâm A, bán kính 4 cm và đường tròn tâm B, bán kính 3 cm. Hai đường tròn này cắt nhau tại D và E. Khẳng định nào sau đây đúng nhất?
Câu 4:
Cho ∆ABC cân tại A có \(\widehat {{\rm{BAC}}} = 82^\circ \), đường trung trực của AB cắt BC tại D. Số đo của \(\widehat {{\rm{ADB}}}\) là
Câu 6:
Cho hình vẽ, biết AC = 8 cm và chu vi ∆ABC bằng 22 cm.
Độ dài cạnh BC là