Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O)

Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) và (O'), góc giữa AB và CD bằng 30°, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:

Trả lời
Cho khối trụ có hai đáy là (O) và (O'). AB, CD lần lượt là hai đường kính của (O) (ảnh 1)

Gọi A', B' lần lượt là hình chiếu của A, B lên đường tròn (O).

C', D' lần lượt là hình chiếu của C, D lên đường tròn (O').

Suy ra AC'BD' là hình bình hành, lại có AB = CD = C'D' nên AC'BD' là hình chữ nhật.

Khi đó AC'BD'.A'CB'D là hình hộp chữ nhật.

Ta có: VAC'BD'.A'CB'D = VA.BCD + VA.A'CD + VB.B'CD + VC.C'AB + VD.D'AB

\({V_{A.A'CD}} = \frac{1}{3}AA'\,.\,{S_{A'CD}} = \frac{1}{3}AA'\,.\,\frac{1}{2}{S_{A'CB'D}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)

Chứng minh tương tự ta có: \({V_{B.B'CD}} = {V_{C.C'AB}} = {V_{D.D'AB}} = \frac{1}{6}{V_{AC'BD'.A'CB'D}}\)

\[ \Rightarrow {V_{AC'BD'.A'CB'D}} = {V_{ABCD}} + 4\,.\,\frac{1}{6}{V_{AC'BD'.A'CB'D}}\]

\[ \Rightarrow {V_{ABCD}} = \frac{1}{3}{V_{AC'BD'.A'CB'D}} = 30\]

Þ VAC'BD'.A'CB'D = 90.

Theo bài ra ta có: \(\left( {\widehat {AB;\;CD}} \right) = 30^\circ \Rightarrow \left( {\widehat {AB;\;C'D'}} \right) = 30^\circ \).

Giả sử \(\left( {\widehat {AB;\;C'D'}} \right) = \widehat {AOC'} = 30^\circ \).

Lại có: \[OA = OC' = \frac{1}{2}AB = 3\]

\( \Rightarrow {S_{OAC'}} = \frac{1}{2}OA\,.\,OC'\,.\,\sin \widehat {AOC'} = \frac{1}{2}\,.\,3\,.\,3\,.\,\sin 30^\circ = \frac{9}{4}\)

Þ SAC'BD' = 4SOAC' = 9.

Ta có: VAC'BD'.A'CB'D = AA'.SAC'BD'

Þ 90 = AA'.9 Û AA' = 10.

Vậy thể tích khối trụ là:

V = pr2h = p.OA2.AA' = p.32.10 = 90p.

Câu hỏi cùng chủ đề

Xem tất cả