Cho hình vuông ABCD. Qua A vẽ 2 đường thẳng vuông góc với nhau, cắt BC tại Q và R, cắt CD tại P và S. a) Tam giác AQR và APS là tam giác cân.

Cho hình vuông ABCD. Qua A vẽ 2 đường thẳng vuông góc với nhau, cắt BC tại Q và R, cắt CD tại P và S.

a) Tam giác AQR và APS là tam giác cân.

Trả lời
Cho hình vuông ABCD. Qua A vẽ 2 đường thẳng vuông góc với nhau, cắt BC tại Q và R, cắt CD tại P và S. a) Tam giác AQR và APS là tam giác cân. (ảnh 1)

a) Xét tam giác vuông ABR và ADQ có:

AB = AD (giả thiết)

BAR^+BAP^= 90°

DAQ^+BAP^ Góc = 90°

  BAR^=DAQ^

∆ABR = ∆ADQ (cạnh góc vuông – góc nhọn kề)

AR = AQ (2 cạnh tương ứng)

Tam giác AQR cân tại A.

Chứng minh tương tự: ta có ∆ADS = ∆ABP

AS = AP ∆APS cân tại A.

Câu hỏi cùng chủ đề

Xem tất cả