a) Vì ABCD là hình vuông nên AB = BC = CD = DA và \(\widehat {ABC} = \widehat {BC{\rm{D}}} = \widehat {C{\rm{D}}A} = \widehat {DAB} = 90^\circ \)
Ta có:
\(\widehat {MAN} = \widehat {MA{\rm{D}}} + \widehat {DAN} = 90^\circ \)
\(\widehat {BA{\rm{D}}} = \widehat {MA{\rm{D}}} + \widehat {MAB} = 90^\circ \)
Suy ra \(\widehat {DAN} = \widehat {BAM}\)
Xét tam giác ADN và tam giác ABM có
\(\widehat {A{\rm{D}}N} = \widehat {ABM}\left( { = 90^\circ } \right)\)
AD = AB (chứng minh trên)
\(\widehat {DAN} = \widehat {BAM}\) (chứng minh trên)
Suy ra ∆ADN = ∆ABM (g.c.g)
Do đó AM = AN, DN = BM (các cặp cạnh tương ứng)
Suy ra tam giác AMN cân tại A
Khi đó tam giác AMN vuông cân tại A
Xét tam giác AMN cân tại A có AP là đường cao nên AP đồng thời là phân giác
Do đó \(\widehat {NAP} = \widehat {MAP} = \frac{1}{2}\widehat {MAN} = \frac{1}{2}.90^\circ = 45^\circ \)
Vì ABCD là hình vuông có CA là đường chéo nên \(\widehat {AC{\rm{D}}} = \widehat {ACB} = \frac{{90^\circ }}{2} = 45^\circ \)
Xét ∆ACN và ∆PAN có
\(\widehat {NAP} = \widehat {NCA}\left( { = 45^\circ } \right)\)
\(\widehat {ANC}\) là góc chung
Suy ra (g.g)
Do đó \(\frac{{AN}}{{PN}} = \frac{{CN}}{{AN}}\)
Hay AN2 = NC . NP
b) Xét tam giác APN và tam giác APM có
AP là cạnh chung
\(\widehat {PAN} = \widehat {PAM}\) (chứng minh câu a)
AN = AM (chứng minh câu a)
Suy ra ∆APN = ∆APM (c.g.c)
Do đó PM = PN (hai cạnh tương ứng)
Chu vi tam giác MCP là:
CM + MP + CP = CM + PN + CP = CM + PB + DN + CP
= CM + PB + BM + CP = (CM + BM) + (PB + CP) = CD + CB = 2BC
Chu vi hình vuông ABCD là: 4BC
Vậy tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD bằng \(\frac{{2BC}}{{4BC}} = \frac{1}{2}\)
c) Ta có: \[{{\rm{S}}_{ANQ}} = \frac{1}{2}AN.AQ = \frac{1}{2}A{\rm{D}}.NQ\]
Suy ra \(\frac{1}{{A{\rm{D}}}} = \frac{{NQ}}{{AN.AQ}}\)
Do đó \(\frac{1}{{A{{\rm{D}}^2}}} = \frac{{N{Q^2}}}{{A{N^2}.A{Q^2}}}\)
Vì tam giác ANQ vuông tại A nên AN2 + AQ2 = NQ2
Suy ra \(\frac{1}{{A{{\rm{D}}^2}}} = \frac{{A{N^2} + A{Q^2}}}{{A{N^2}.A{Q^2}}} = \frac{1}{{A{N^2}}} + \frac{1}{{A{Q^2}}}\)
Vì AD là cạnh hình vuông nên AD không đổi
Suy ra tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC
Vậy tổng \(\frac{1}{{A{M^2}}} + \frac{1}{{A{Q^2}}}\) không đổi khi điểm M thay đổi trên cạnh BC.